44 research outputs found
Integrated metabolomics and lipidomics evaluate the alterations of flavor precursors in chicken breast muscle with white striping symptom
White striping (WS) is the most common myopathy in the broiler chicken industry. To reveal flavor changes of WS meat objectively, flavor precursors of WS breast muscle were evaluated systematically with integrated metabolomics and lipidomics. The results showed that WS could be distinguished from normal controls by E-nose, and four volatile compounds (o-xylene, benzene, 1,3-dimethyl, 2-heptanone and 6-methyl and Acetic acid and ethyl ester) were detected as decreased compounds by gas chromatography-mass spectrometry. Lipidomic analysis showed that WS breast fillets featured increased neutral lipid (83.8%) and decreased phospholipid molecules (33.2%). Targeted metabolomic analysis indicated that 16 hydrophilic metabolites were altered. Thereinto, some water-soluble flavor precursors, such as adenosine monophosphate, GDP-fucose and L-arginine increased significantly, but fructose 1,6-bisphosphate and L-histidine significantly decreased in the WS group. These results provided a systematic evaluation of the flavor precursors profile in the WS meat of broiler chickens
Wheat TaRab7 GTPase Is Part of the Signaling Pathway in Responses to Stripe Rust and Abiotic Stimuli
Small GTP-binding proteins function as regulators of specific intercellular fundamental biological processes. In this study, a small GTP-binding protein Rab7 gene, designated as TaRab7, was identified and characterized from a cDNA library of wheat leaves infected with Puccinia striiformis f. sp. tritici (Pst) the wheat stripe rust pathogen. The gene was predicted to encode a protein of 206 amino acids, with a molecular mass of 23.13 KDa and an isoeletric point (pI) of 5.13. Further analysis revealed the presence of a conserved signature that is characteristic of Rab7, and phylogenetic analysis demonstrated that TaRab7 has the highest similarity to a small GTP binding protein gene (BdRab7-like) from Brachypodium distachyon. Quantitative real-time PCR assays revealed that the expression of TaRab7 was higher in the early stage of the incompatible interactions between wheat and Pst than in the compatible interaction, and the transcription level of TaRab7 was also highly induced by environmental stress stimuli. Furthermore, knocking down TaRab7 expression by virus induced gene silencing enhanced the susceptibility of wheat cv. Suwon 11 to an avirulent race CYR23. These results imply that TaRab7 plays an important role in the early stage of wheat-stripe rust fungus interaction and in stress tolerance
Molecular Characterization of a Fus3/Kss1 Type MAPK from Puccinia striiformis f. sp. tritici, PsMAPK1
Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst
Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library
A new gene encoding a lipase (designated as Lip-1) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production
Ginsenoside Rg3 Suppresses Proliferation and Induces Apoptosis in Human Osteosarcoma
Osteosarcoma is the most common primary malignancy of bone in children and the elderly. Recently, more and more researches have demonstrated that Ginsenoside Rg3 (Rg3) is involved in chemotherapy resistance in many cancer, making it a promising Chinese herbal monomer for oncotherapy. In this study, we investigated the efficacy of Rg3 in human osteosarcoma cell lines (MG-63, U-2OS, and SaOS-2). Cell proliferation was measured by CCK8 assay. The migration of cells was examined using the scratch assay method. Quantification of apoptosis was assessed further by flow cytometry. In addition, the expression of apoptosis-related genes (caspase9, caspase3, Bcl2, and Bax) were investigated using RT-PCR. We further investigated the protein level expression of Bcl 2, cleaved-caspase3, and PI3K/AKT/mTOR signaling pathway factors by Western blot assay. Our results revealed that Rg3 inhibited the proliferation and migration of human osteosarcoma cells and induced apoptosis in a concentration- and time-dependent manner. Western blot results showed that Rg3 reduced the protein expression of Bcl2 and PI3K/AKT/mTORbut increased the levels of cleaved-caspase3. Therefore, we hypothesized Rg3 inhibits the proliferation of osteosarcoma cell line and induces their apoptosis by affecting apoptosis-related genes (Bcl2, caspase3) as well as the PI3K/AKT/mTOR signaling pathway. To conclude, Rg3 is a new therapeutic agent against osteosarcoma
Effect of Cr2O3 on the microstructure and tribological performance of sprayed Fe-based coating on cylinder liner
Effect of Cr2O3 on the microstructure and tribological performance of sprayed Fe-based coating on cylinder line
VceC Mediated IRE1 Pathway and Inhibited CHOP-induced Apoptosis to Support Brucella Replication in Goat Trophoblast Cells
The effectors of the type IV secretion system (T4SS) of bacteria play important roles in mediating bacterial intracellular proliferation and manipulating host-related pathway responses to bacterial infection. Brucella Spp. inhibit the apoptosis of host cells to benefit their own intracellular proliferation. However, the underlying mechanisms between T4SS effectors and Brucella-inhibited apoptosis in goat trophoblast cells remain unclear. Here, based on Brucella suis vaccine strain 2, the VceC was deleted by allelic exchange. We show that ΔVceC was able to infect and proliferate to high titers in goat trophoblast cells (GTCs) and increase C/EBP-homologous protein (CHOP)-mediated apoptosis. GRP78 expression decreased upon ΔVceC infection. In addition, we discovered that the inositolrequiring enzyme 1 (IRE1) pathway was inhibited in this process. Changing endoplasmic reticulum (ER) stress affected Brucella intracellular replication in GTCs. The replication of ΔVceC was more sensitive under the different ERstress conditions in the GTC line after treatment with ER stress inhibitors 4 phenyl butyric acid (4-PBA) or ER stress activator Tm. Together, our findings show that VceC has a protective effect on the intracellular persistence of Brucella infection, and inhibits ER stress-induced apoptosis in the CHOP pathway. The present work provides new insights for understanding the mechanism of VceC in the establishment of chronic Brucella infection
Ultrasensitive Ochratoxin A Detection in Cereal Products Using a Fluorescent Aptasensor Based on RecJ<sub>f</sub> Exonuclease-Assisted Target Recycling
Ochratoxin A (OTA) is a mycotoxin widely found in foodstuffs such as cereal grains. It greatly threatens human health owing to its strong toxicity and high stability. Aptasensors have emerged as promising tools for the analysis of small molecule contaminants. Nucleic-acid-based signal amplification enables detectable signals to be obtained from aptasensors. However, this strategy often requires the use of complex primers or multiple enzymes, entailing problems such as complex system instability. Herein, we propose a fluorescent aptasensor for the ultrasensitive detection of OTA in cereal products, with signal amplification through RecJf exonuclease-assisted target recycling. The aptamer/fluorescein-labeled complementary DNA (cDNA-FAM) duplex was effectively used as the target-recognition unit as well as the potential substrate for RecJf exonuclease cleavage. When the target invaded the aptamer-cDNA-FAM duplex to release cDNA-FAM, RecJf exonuclease could cleave the aptamer bonded with the target and release the target. Thus, the target-triggered cleavage cycling would continuously generate cDNA-FAM as a signaling group, specifically amplifying the response signal. The proposed exonuclease-assisted fluorescent aptasensor exhibited a good linear relationship with OTA concentration in the range from 1 pg/mL to 10 ng/mL with an ultralow limit of detection (6.2 ng/kg of cereal). The analytical method showed that recoveries of the cereal samples ranged from 83.7 to 109.3% with a repeatability relative standard deviation below 8%. Importantly, the proposed strategy is expected to become a common detection model because it can be adapted for other targets by replacing the aptamer. Thus, this model can guide the development of facile approaches for point-of-care testing applications
Ion/Electron Redistributed 3D Flexible Host for Achieving Highly Reversible Li Metal Batteries
3D carbon frameworks are promising hosts to achieve highly reversible lithium (Li) metal anodes, whereas insufficient effects are attributed to their single electron conductivity causing local aggregating of electron/Li+ and uncontrollable Li dendrites. Herein, an ion/electron redistributed 3D flexible host is designed by lithiophilic carbon fiber cloth (CFC) modified with metal–organic framework (MOF)-derived porous carbon sheath with embedded CoP nanoparticles (CoP-C@CFC). Theory calculations demonstrate the strong binding energy and plenty of charge transfer from the reaction between CoP and Li atom are presented, which is beneficial to in situ construct a Li3P@Co ion/electron conductive interface on every single CoP-C@CFC. Thanks to the high ionic conductive Li3P and electron-conductive Co nanoparticles, the rapid dispersion of Li+ and obviously reduced local current density can be achieved simultaneously. Furthermore, in situ optical microscopy observations display obvious depression for volume expansion and Li dendrites. As expected, a miraculous average Coulombic efficiency (CE) of 99.96% over 1100 cycles at 3 mA cm-2 and a low overpotential of 11.5 mV with prolonged cycling of over 3200 h at 20% depth of discharge are successfully obtained. Consequently, the CoP-C@CFC-Li||LiFePO4 full cells maintain a capacity retention of 95.8% with high CE of 99.96% over 500 cycles at 2 C and excellent rate capability.An ion/electron redistributed 3D flexible host is designed by lithiophilic carbon fiber cloth modified with MOF-derived porous carbon sheath with embedded CoP nanoparticles (CoP-C@CFC). During the Li plating, the in situ formed Li3P@Co conductive interface on CoP-C@CFC realizes Li+/charge redistribution, which achieves highly average Coulombic efficiency of 99.96% over 1100 cycles at practical current density of 3 mA cm−2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/173123/1/smll202107641_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/173123/2/smll202107641.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/173123/3/smll202107641-sup-0001-SuppMat.pd