151 research outputs found

    Implications of Shock Wave Experiments with Precompressed Materials for Giant Planet Interiors

    Full text link
    This work uses density functional molecular dynamics simulations of fluid helium at high pressure to examine how shock wave experiments with precompressed samples can help characterizing the interior of giant planets. In particular, we analyze how large of a precompression is needed to probe a certain depth in a planet's gas envelope. We find that precompressions of up to 0.1, 1.0, 10, or 100 GPa are needed to characterized 2.5, 5.9, 18, to 63% of Jupiter's envelope by mass.Comment: Submitted As Proceedings Article For The American Physical Society Meeting On Shock Compression Of Condensed Matter, Hawaii, June, 200

    Faunal studies of the type Chesteran, Upper Mississippian of southwestern Illinois

    Get PDF
    48 p., 7 pl., 4 fig.http://paleo.ku.edu/contributions.htm

    Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    Full text link
    Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and overall strength of the sample. To investigate relatively large deformations multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased strength of the sample with fine metallic particles is due to the formation of force chains under dynamic loading. This phenomenon occurs even at larger porosity of the PTFE matrix in comparison with samples with larger particle size of W and higher density of the PTFE matrix.Comment: 5 pages, 6 figure

    Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys

    Full text link
    Dislocation velocities and mobilities are studied by Molecular Dynamics simulations for edge and screw dislocations in pure aluminum and nickel, and edge dislocations in Al-2.5%Mg and Al-5.0%Mg random substitutional alloys using EAM potentials. In the pure materials, the velocities of all dislocations are close to linear with the ratio of (applied stress)/(temperature) at low velocities, consistent with phonon drag models and quantitative agreement with experiment is obtained for the mobility in Al. At higher velocities, different behavior is observed. The edge dislocation velocity remains dependent solely on (applied stress)/(temperature) up to approximately 1.0 MPa/K, and approaches a plateau velocity that is lower than the smallest "forbidden" speed predicted by continuum models. In contrast, above a velocity around half of the smallest continuum wave speed, the screw dislocation damping has a contribution dependent solely on stress with a functional form close to that predicted by a radiation damping model of Eshelby. At the highest applied stresses, there are several regimes of nearly constant (transonic or supersonic) velocity separated by velocity gaps in the vicinity of forbidden velocities; various modes of dislocation disintegration and destabilization were also encountered in this regime. In the alloy systems, there is a temperature- and concentration-dependent pinning regime where the velocity drops sharply below the pure metal velocity. Above the pinning regime but at moderate stresses, the velocity is again linear in (applied stress)/(temperature) but with a lower mobility than in the pure metal.Comment: PDF, 30 pages including figures, submitted to Modelling Simul. Mater. Sci. En
    • …
    corecore