3,742 research outputs found
Formation of plasma around a small meteoroid: 1. Kinetic theory
This article is a companion to Dimant and Oppenheim [2017] https://doi.org/10.1002/2017JA023963.This paper calculates the spatial distribution of the plasma responsible for radar head echoes by applying the kinetic theory developed in the companion paper. This results in a set of analytic expressions for the plasma density as a function of distance from the meteoroid. It shows that at distances less than a collisional mean free path from the meteoroid surface, the plasma density drops in proportion to 1/R where R is the distance from the meteoroid center; and, at distances much longer than the meanâfreeâpath behind the meteoroid, the density diminishes at a rate proportional to 1/R2. The results of this paper should be used for modeling and analysis of radar head echoes.This work was supported by NSF grant AGS-1244842. (AGS-1244842 - NSF
Stimulated wave of polarization in spin chains
Stimulated wave of polarization, triggered by a flip of a single spin,
presents a simple model of quantum amplification. Previously, it has been found
that such wave can be excited in a 1D Ising chain with nearest-neighbor
interactions, irradiated by a weak resonant transverse field. Here we explore
models with more realistic Hamiltonians, in particular, with natural
dipole-dipole interactions. Results of simulations for 1D spin chains and rings
with up to nine spins are presented.Comment: 15 pages, 5 figure
Analysis of a three-component model phase diagram by Catastrophe Theory
We analyze the thermodynamical potential of a lattice gas model with three
components and five parameters using the methods of Catastrophe Theory. We find
the highest singularity, which has codimension five, and establish its
transversality. Hence the corresponding seven-degree Landau potential, the
canonical form Wigwam or , constitutes the adequate starting point to
study the overall phase diagram of this model.Comment: 16 pages, Latex file, submitted to Phys. Rev.
Atmospheric water balance
Submitted to Office of Water Resources Research, U.S. Department of Interior.Includes bibliographical references.OWRR project no. B-035-COLO
Enhancing dopamine tone modulates global and local cortical perfusion as a function of COMT Val158Met genotype
The cognitive effects of pharmacologically enhancing cortical dopamine (DA) tone are variable across healthy human adults. It has been postulated that individual differences in drug responses are linked to baseline cortical DA activity according to an inverted-U-shaped function. To better understand the effect of divergent starting points along this curve on DA drug responses, researchers have leveraged a common polymorphism (rs4680) in the gene encoding the enzyme catechol-O-methyltransferase (COMT) that gives rise to greater (Met allele) or lesser (Val allele) extracellular levels of cortical DA. Here we examined the extent to which changes in resting cortical perfusion following the administration of two mechanistically-distinct dopaminergic drugs vary by COMT genotype, and thereby track predictions of the inverted-U model. Using arterial spin labeling (ASL) and a double-blind, within-subject design, perfusion was measured in 75 healthy, genotyped participants once each after administration of tolcapone (a COMT inhibitor), bromocriptine (a DA D2/3 agonist), and placebo. COMT genotype and drug interacted such that COMT Val homozygotes exhibited increased prefusion in response to both drugs, whereas Met homozygotes did not. Additionally, tolcapone-related perfusion changes in the right inferior frontal gyrus correlated with altered performance on a task of executive function. No comparable effects were found for a genetic polymorphism (rs1800497) affecting striatal DA system function. Together, these results indicate that both the directionality and magnitude of drug-induced perfusion change provide meaningful information about individual differences in response to enhanced cortical DA tone
Simulator sickness when performing gaze shifts within a wide field of view optic flow environment: preliminary evidence for using virtual reality in vestibular rehabilitation
BACKGROUND: Wide field of view virtual environments offer some unique features that may be beneficial for use in vestibular rehabilitation. For one, optic flow information extracted from the periphery may be critical for recalibrating the sensory processes used by people with vestibular disorders. However, wide FOV devices also have been found to result in greater simulator sickness. Before a wide FOV device can be used in a clinical setting, its safety must be demonstrated. METHODS: Symptoms of simulator sickness were recorded by 9 healthy adult subjects after they performed gaze shifting tasks to locate targets superimposed on an optic flow background. Subjects performed 8 trials of gaze shifting on each of the six separate visits. RESULTS: The incidence of symptoms of simulator sickness while subjects performed gaze shifts in an optic flow environment was lower than the average reported incidence for flight simulators. The incidence was greater during the first visit compared with subsequent visits. Furthermore, the incidence showed an increasing trend over the 8 trials. CONCLUSION: The performance of head unrestrained gaze shifts in a wide FOV optic flow environment is tolerated well by healthy subjects. This finding provides rationale for testing these environments in people with vestibular disorders, and supports the concept of using wide FOV virtual reality for vestibular rehabilitation
Widespread Tau Seeding Activity at Early Braak Stages
Transcellular propagation of tau aggregates may underlie the progression of pathology in Alzheimer\u27s disease (AD) and other tauopathies. Braak staging (B1, B2, B3) is based on phospho-tau accumulation within connected brain regions: entorhinal cortex (B1); hippocampus/limbic system (B2); and frontal and parietal lobes (B3). We previously developed a specific and sensitive assay that uses flow cytometry to quantify tissue seeding activity based on fluorescence resonance energy transfer (FRET) in cells that stably express tau reporter proteins. In a tauopathy mouse model, we have detected seeding activity far in advance of histopathological changes. It remains unknown whether individuals with AD also develop seeding activity prior to accumulation of phospho-tau. We measured tau seeding activity across four brain regions (hippocampus, frontal lobe, parietal lobe, and cerebellum) in 104 fresh-frozen human AD brain samples from all Braak stages. We observed widespread seeding activity, notably in regions predicted to be free of phospho-tau deposition, and in detergent-insoluble fractions that lacked tau detectable by ELISA. Seeding activity correlated positively with Braak stage and negatively with MMSE. Our results are consistent with early transcellular propagation of tau seeds that triggers subsequent development of neuropathology. The FRET-based seeding assay may also complement standard neuropathological classification of tauopathies
- âŠ