269 research outputs found
Laser surface structuring: a method to change topography, promote coating deposition and reduce corrosion rate
Diabetic autonomic neuropathy: evidence for apoptosis in situ in the rat
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75065/1/j.1365-2982.2004.00524.x.pd
Circulating microparticles: square the circle
Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes
Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE
Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked
Calcium modulates force sensing by the von Willebrand factor A2 domain
von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. VWF potency critically depends on multimer size, which is regulated by a feedback mechanism involving shear-induced unfolding of the VWF-A2 domain and cleavage by the metalloprotease ADAMTS-13. Here we report crystallographic and single-molecule optical tweezers data on VWF-A2 providing mechanistic insight into calcium-mediated stabilization of the native conformation that protects A2 from cleavage by ADAMTS-13. Unfolding of A2 requires higher forces when calcium is present and primarily proceeds through a mechanically stable intermediate with non-native calcium coordination. Calcium further accelerates refolding markedly, in particular, under applied load. We propose that calcium improves force sensing by allowing reversible force switching under physiologically relevant hydrodynamic conditions. Our data show for the first time the relevance of metal coordination for mechanical properties of a protein involved in mechanosensing
Interaction of the tetracyclines with double-stranded RNAs of random base sequence: new perspectives on the target and mechanism of action
The 16S rRNA binding mechanism proposed for the antibacterial action of the tetracyclines does not explain their mechanism of action against non-bacterial pathogens. In addition, several contradictory base pairs have been proposed as their binding sites on the 16S rRNA. This study investigated the binding of minocycline and doxycycline to short double-stranded RNAs (dsRNAs) of random base sequences. These tetracyclines caused a dose-dependent decrease in the fluorescence intensities of 6-carboxyfluorescein (FAM)-labelled dsRNA and ethidium bromide (EtBr)-stained dsRNA, indicating that both drugs bind to dsRNA of random base sequence in a manner that is competitive with the binding of EtBr and other nucleic acid ligands often used as stains. This effect was observable in the presence of Mg2+. The binding of the tetracyclines to dsRNA changed features of the fluorescence emission spectra of the drugs and the CD spectra of the RNA, and inhibited RNase III cleavage of the dsRNA. These results indicate that the double-stranded structures of RNAs may have a more important role in their interaction with the tetracyclines than the specific base pairs, which had hitherto been the subject of much investigation. Given the diverse functions of cellular RNAs, the binding of the tetracyclines to their double-stranded helixes may alter the normal processing and functioning of the various biological processes they regulate. This could help to explain the wide range of action of the tetracyclines against various pathogens and disease condition
Effect of breeder age on eggshell thickness, surface temperature, hatchability and chick weigh
Two experiments were carried out to study the effect of breeder age on incubation parameters (hatchability, eggshell thickness, egg surface temperature and chick weight). In Exp. 1, fertile eggs (30- and 60-wk-old breeders) were incubated at three different temperatures (36.8, 37.8 and 38.8 ºC). Eggshell surface temperature was measured by attaching a thermocouple to the shell and data were collected in a datalogger every ten minutes. This study was conducted according to a 3 x 2 factorial design (three temperatures and two breeder ages). Data revealed that eggshell surface temperature changed according to incubation temperature, with the main increase occurring between 10 and 13 days of incubation, and that the maximum increase in eggshell surface temperature was not higher than +0.6 ºC, irrespective of incubator temperature. The incubator temperature affected total incubation period and hatchability (%) at 38.8 ºC, independent of breeder age. Heavier eggs resulted in heavier chicks, irrespective of incubator temperature. In Exp 2, the eggs (30- and 60-wk-old breeders) were incubated at 37.8 ºC and eggs characteristics (weight, specific gravity, total hatchability and chicks weight) were evaluated according to a randomized experimental design. The data showed that breeder age affected eggshell thickness and chick weight (heavier eggs resulted in heavier chicks), but not specific gravity, eggshell surface temperature or hatchability. The findings of this study revealed that hatchability can be influenced by incubation temperature, but not by the breeder age. Breeder age can affect eggshell thickness, egg weight and eggshell surface temperature, but not specific gravity
Avaliação do ganho funcional do cotovelo com a cirurgia de Steindler na lesão do plexo braquial
- …
