115 research outputs found

    Partial Pressure of Arterial Oxygen in Healthy Adults at High Altitudes: A Systematic Review and Meta-Analysis

    Get PDF
    Importance: With increasing altitude, the partial pressure of inspired oxygen decreases and, consequently, the Pao2_{2} decreases. Even though this phenomenon is well known, the extent of the reduction as a function of altitude remains unknown. Objective: To calculate an effect size estimate for the decrease in Pao2_{2} with each kilometer of vertical gain among healthy unacclimatized adults and to identify factors associated with Pao2_{2} at high altitude (HA). Data Sources: A systematic search of PubMed and Embase was performed from database inception to April 11, 2023. Search terms included arterial blood gases and altitude. Study Selection: A total of 53 peer-reviewed prospective studies in healthy adults providing results of arterial blood gas analysis at low altitude (<1500 m) and within the first 3 days at the target altitude (≥1500 m) were analyzed. Data Extraction and Synthesis: Primary and secondary outcomes as well as study characteristics were extracted from the included studies, and individual participant data (IPD) were requested. Estimates were pooled using a random-effects DerSimonian-Laird model for the meta-analysis. Main Outcomes and Measures: Mean effect size estimates and 95% CIs for reduction in Pao2_{2} at HA and factors associated with Pao2_{2} at HA in healthy adults. Results: All of the 53 studies involving 777 adults (mean [SD] age, 36.2 [10.5] years; 510 men [65.6%]) reporting 115 group ascents to altitudes between 1524 m and 8730 m were included in the aggregated data analysis; 13 of those studies involving 305 individuals (mean [SD] age, 39.8 [13.6] years; 185 men [60.7%]) reporting 29 ascents were included in the IPD analysis. The estimated effect size of Pao2_{2} was −1.60 kPa (95% CI, −1.73 to −1.47 kPa) for each 1000 m of altitude gain (τ2^{2} = 0.14; I2^{2} = 86%). The Pao2_{2} estimation model based on IPD data revealed that target altitude (−1.53 kPa per 1000 m; 95% CI, −1.63 to −1.42 kPa per 1000 m), age (−0.01 kPa per year; 95% CI, −0.02 to −0.003 kPa per year), and time spent at an altitude of 1500 m or higher (0.16 kPa per day; 95% CI, 0.11-0.21 kPa per day) were significantly associated with Pao2_{2}. Conclusions and Relevance: In this systematic review and meta-analysis, the mean decrease in Pao2_{2} was 1.60 kPa per 1000 m of vertical ascent. This effect size estimate may improve the understanding of physiological mechanisms, assist in the clinical interpretation of acute altitude illness in healthy individuals, and serve as a reference for physicians counseling patients with cardiorespiratory disease who are traveling to HA regions

    Mechanisms of Improved Exercise Performance under Hyperoxia

    Full text link
    BACKGROUND The impact of hyperoxia on exercise limitation is still incompletely understood. OBJECTIVES We investigated to which extent breathing hyperoxia enhances the exercise performance of healthy subjects and which physiologic mechanisms are involved. METHODS A total of 32 healthy volunteers (43 ± 15 years, 12 women) performed 4 bicycle exercise tests to exhaustion with ramp and constant-load protocols (at 75% of the maximal workload [Wmax] on FiO2 0.21) on separate occasions while breathing ambient (FiO2 0.21) or oxygen-enriched air (FiO2 0.50) in a random, blinded order. Workload, endurance, gas exchange, pulse oximetry (SpO2), and cerebral (CTO) and quadriceps muscle tissue oxygenation (QMTO) were measured. RESULTS During the final 15 s of ramp exercising with FiO2 0.50, Wmax (mean ± SD 270 ± 80 W), SpO2 (99 ± 1%), and CTO (67 ± 9%) were higher and the Borg CR10 Scale dyspnea score was lower (4.8 ± 2.2) than the corresponding values with FiO2 0.21 (Wmax 257 ± 76 W, SpO2 96 ± 3%, CTO 61 ± 9%, and Borg CR10 Scale dyspnea score 5.7 ± 2.6, p < 0.05, all comparisons). In constant-load exercising with FiO2 0.50, endurance was longer than with FiO2 0.21 (16 min 22 s ± 7 min 39 s vs. 10 min 47 s ± 5 min 58 s). With FiO2 0.50, SpO2 (99 ± 0%) and QMTO (69 ± 8%) were higher than the corresponding isotime values to end-exercise with FiO2 0.21 (SpO2 96 ± 4%, QMTO 66 ± 9%), while minute ventilation was lower in hyperoxia (82 ± 18 vs. 93 ± 23 L/min, p < 0.05, all comparisons). CONCLUSION In healthy subjects, hyperoxia increased maximal power output and endurance. It improved arterial, cerebral, and muscle tissue oxygenation, while minute ventilation and dyspnea perception were reduced. The findings suggest that hyperoxia enhanced cycling performance through a more efficient pulmonary gas exchange and a greater availability of oxygen to muscles and the brain (cerebral motor and sensory neurons)

    The Impact of Breathing Hypoxic Gas and Oxygen on Pulmonary Hemodynamics in Patients With Pulmonary Hypertension

    Full text link
    BackgroundPure oxygen breathing (hyperoxia) may improve hemodynamics in patients with pulmonary hypertension (PH) and allows to calculate right-to-left shunt fraction (Qs/Qt), whereas breathing normobaric hypoxia may accelerate hypoxic pulmonary vasoconstriction (HPV). This study investigates how hyperoxia and hypoxia affect mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with PH and whether Qs/Qt influences the changes of mPAP and PVR.Study Design and MethodsAdults with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) underwent repetitive hemodynamic and blood gas measurements during right heart catheterization (RHC) under normoxia [fractions of inspiratory oxygen (FiO2_{2}) 0.21], hypoxia (FiO2_{2} 0.15), and hyperoxia (FiO2_{2} 1.0) for at least 10 min.ResultsWe included 149 patients (79/70 PAH/CTEPH, 59% women, mean ± SD 60 ± 17 years). Multivariable regressions (mean change, CI) showed that hypoxia did not affect mPAP and cardiac index, but increased PVR [0.4 (0.1–0.7) WU, p = 0.021] due to decreased pulmonary artery wedge pressure [−0.54 (−0.92 to −0.162), p = 0.005]. Hyperoxia significantly decreased mPAP [−4.4 (−5.5 to −3.3) mmHg, p &lt; 0.001] and PVR [−0.4 (−0.7 to −0.1) WU, p = 0.006] compared with normoxia. The Qs/Qt (14 ± 6%) was &gt;10 in 75% of subjects but changes of mPAP and PVR under hyperoxia and hypoxia were independent of Qs/Qt.ConclusionAcute exposure to hypoxia did not relevantly alter pulmonary hemodynamics indicating a blunted HPV-response in PH. In contrast, hyperoxia remarkably reduced mPAP and PVR, indicating a preserved vasodilator response to oxygen and possibly supporting the oxygen therapy in patients with PH. A high proportion of patients with PH showed increased Qs/Qt, which, however, was not associated with changes in pulmonary hemodynamics in response to changes in FiO2_{2}

    Influence of Upright Versus Supine Position on Resting and Exercise Hemodynamics in Patients Assessed for Pulmonary Hypertension

    Full text link
    Background The aim of the present work was to study the influence of body position on resting and exercise pulmonary hemodynamics in patients assessed for pulmonary hypertension (PH). Methods and Results Data from 483 patients with suspected PH undergoing right heart catheterization for clinical indications (62% women, age 61±15 years, 246 precapillary PH, 48 postcapillary PH, 106 exercise PH, 83 no PH) were analyzed; 213 patients (main cohort, years 2016-2018) were examined at rest in upright (45°) and supine position, such as under upright exercise. Upright exercise hemodynamics were compared with 270 patients (historical cohort) undergoing supine exercise with the same protocol. Upright versus supine resting data revealed a lower mean pulmonary artery pressure 31±14 versus 32±13 mm Hg, pulmonary artery wedge pressure 11±4 versus 12±5 mm Hg, and cardiac index 2.9±0.7 versus 3.1±0.8 L/min per m2, and higher pulmonary vascular resistance 4.1±3.1 versus 3.9±2.8 Wood P<0.001. Exercise data upright versus supine revealed higher work rates (53±26 versus 33±22 watt), and adjusting for differences in work rate and baseline values, higher end-exercise mean pulmonary artery pressure (52±19 versus 45±16 mm Hg, P=0.001), similar pulmonary artery wedge pressure and cardiac index, higher pulmonary vascular resistance (5.4±3.7 versus 4.5±3.4 Wood units, P=0.002), and higher mean pulmonary artery pressure/cardiac output (7.9±4.7 versus 7.1±4.1 Wood units, P=0.001). Conclusions Body position significantly affects resting and exercise pulmonary hemodynamics with a higher pulmonary vascular resistance of about 10% in upright versus supine position at rest and end-exercise, and should be considered and reported when assessing PH. Keywords: body position; exercise; hemodynamic; pulmonary hypertension; right heart catheterization

    Pulmonary arterial wedge pressure increase during exercise in patients diagnosed with pulmonary arterial or chronic thromboembolic pulmonary hypertension

    Get PDF
    Background: The course of pulmonary arterial wedge pressure (PAWP) during exercise in patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH), further abbreviated as pulmonary vascular disease (PVD), is still unknown. The aim of the study was to describe PAWP during exercise in patients with PVD. Methods: In this cross-sectional study, right heart catheter (RHC) data including PAWP, recorded during semi-supine, stepwise cycle exercise in patients with PVD, were analysed retrospectively. We investigated PAWP changes during exercise until end-exercise. Results: In 121 patients (59 female, 66 CTEPH, 55 PAH, 62±17 years) resting PAWP was 10.2±4.1 mmHg. Corresponding peak changes in PAWP during exercise were +2.9 mmHg (95% CI 2.1-3.7 mmHg, p<0.001). Patients ≥50 years had a significantly higher increase in PAWP during exercise compared with those <50 years (p<0.001). The PAWP/cardiac output (CO) slopes were 3.9 WU for all patients, and 1.6 WU for patients <50 years and 4.5 WU for those ≥50 years. Conclusion: In patients with PVD, PAWP increased slightly but significantly with the onset of exercise compared to resting values. The increase in PAWP during exercise was age-dependent, with patients ≥50 years showing a rapid PAWP increase even with minimal exercise. PAWP/CO slopes >2 WU are common in patients with PVD aged ≥50 years without exceeding the PAWP of 25 mmHg during exercise

    Cardiorespiratory Adaptation to Short-Term Exposure to Altitude vs. Normobaric Hypoxia in Patients with Pulmonary Hypertension

    Full text link
    Prediction of adverse health effects at altitude or during air travel is relevant, particularly in pre-existing cardiopulmonary disease such as pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH, PH). A total of 21 stable PH-patients (64 ± 15 y, 10 female, 12/9 PAH/CTEPH) were examined by pulse oximetry, arterial blood gas analysis and echocardiography during exposure to normobaric hypoxia (NH) (FiO2 15% ≈ 2500 m simulated altitude, data partly published) at low altitude and, on a separate day, at hypobaric hypoxia (HH, 2500 m) within 20–30 min after arrival. We compared changes in blood oxygenation and estimated pulmonary artery pressure in lowlanders with PH during high altitude simulation testing (HAST, NH) with changes in response to HH. During NH, 4/21 desaturated to SpO2 30 min), of which two were HAST-negative. During HH vs. NH, patients had a (mean ± SE) significantly lower PaCO2 4.4 ± 0.1 vs. 4.9 ± 0.1 kPa, mean difference (95% CI) −0.5 kPa (−0.7 to −0.3), PaO2 6.7 ± 0.2 vs. 8.1 ± 0.2 kPa, −1.3 kPa (−1.9 to −0.8) and higher tricuspid regurgitation pressure gradient 55 ± 4 vs. 45 ± 4 mmHg, 10 mmHg (3 to 17), all p < 0.05. No serious adverse events occurred. In patients with PH, short-term exposure to altitude of 2500 m induced more pronounced hypoxemia, hypocapnia and pulmonary hemodynamic changes compared to NH during HAST despite similar exposure times and PiO2. Therefore, the use of HAST to predict physiological changes at altitude remains questionable. (ClinicalTrials.gov: NCT03592927 and NCT03637153)

    Acute high altitude exposure, acclimatization and re-exposure on nocturnal breathing

    Full text link
    Background: Effects of prolonged and repeated high-altitude exposure on oxygenation and control of breathing remain uncertain. We hypothesized that prolonged and repeated high-altitude exposure will improve altitude-induced deoxygenation and breathing instability. Methods: 21 healthy lowlanders, aged 18-30y, underwent two 7-day sojourns at a high-altitude station in Chile (4-8 hrs/day at 5,050 m, nights at 2,900 m), separated by a 1-week recovery period at 520 m. Respiratory sleep studies recording mean nocturnal pulse oximetry (SpO2), oxygen desaturation index (ODI, >3% dips in SpO2), breathing patterns and subjective sleep quality by visual analog scale (SQ-VAS, 0-100% with increasing quality), were evaluated at 520 m and during nights 1 and 6 at 2,900 m in the 1st and 2nd altitude sojourn. Results: At 520 m, mean ± SD nocturnal SpO2 was 94 ± 1%, ODI 2.2 ± 1.2/h, SQ-VAS 59 ± 20%. Corresponding values at 2,900 m, 1st sojourn, night 1 were: SpO2 86 ± 2%, ODI 23.4 ± 22.8/h, SQ-VAS 39 ± 23%; 1st sojourn, night 6: SpO2 90 ± 1%, ODI 7.3 ± 4.4/h, SQ-VAS 55 ± 20% (p < 0.05, all differences within corresponding variables). Mean differences (Δ, 95%CI) in acute effects (2,900 m, night 1, vs 520 m) between 2nd vs 1st altitude sojourn were: ΔSpO2 0% (-1 to 1), ΔODI -9.2/h (-18.0 to -0.5), ΔSQ-VAS 10% (-6 to 27); differences in acclimatization (changes night 6 vs 1), between 2nd vs 1st sojourn at 2,900 m were: ΔSpO2 -1% (-2 to 0), ΔODI 11.1/h (2.5 to 19.7), ΔSQ-VAS -15% (-31 to 1). Conclusion: Acute high-altitude exposure induced nocturnal hypoxemia, cyclic deoxygenations and impaired sleep quality. Acclimatization mitigated these effects. After recovery at 520 m, repeated exposure diminished high-altitude-induced deoxygenation and breathing instability, suggesting some retention of adaptation induced by the first altitude sojourn while subjective sleep quality remained similarly impaired. Keywords: altitude (MeSH); hypoxia; respiration - physiology; respiratory polygraphy; sleep-disordered breathing

    Effects of Acute Hypoxia on Heart Rate Variability in Patients with Pulmonary Vascular Disease

    Get PDF
    Pulmonary vascular diseases (PVDs), defined as arterial or chronic thromboembolic pulmonary hypertension, are associated with autonomic cardiovascular dysregulation. Resting heart rate variability (HRV) is commonly used to assess autonomic function. Hypoxia is associated with sympathetic overactivation and patients with PVD might be particularly vulnerable to hypoxia-induced autonomic dysregulation. In a randomised crossover trial, 17 stable patients with PVD (resting PaO2_2 ≥ 7.3 kPa) were exposed to ambient air (FiO2_2 = 21%) and normobaric hypoxia (FiO2_2 = 15%) in random order. Indices of resting HRV were derived from two nonoverlapping 5–10-min three-lead electrocardiography segments. We found a significant increase in all time- and frequency-domain HRV measures in response to normobaric hypoxia. There was a significant increase in root mean squared sum difference of RR intervals (RMSSD; 33.49 (27.14) vs. 20.76 (25.19) ms; p < 0.01) and RR50 count divided by the total number of all RR intervals (pRR50; 2.75 (7.81) vs. 2.24 (3.39) ms; p = 0.03) values in normobaric hypoxia compared to ambient air. Both high-frequency (HF; 431.40 (661.56) vs. 183.70 (251.25) ms2^2; p < 0.01) and low-frequency (LF; 558.60 (746.10) vs. 203.90 (425.63) ms2^2; p = 0.02) values were significantly higher in normobaric hypoxia compared to normoxia. These results suggest a parasympathetic dominance during acute exposure to normobaric hypoxia in PVD

    Effect of 5 weeks of oral acetazolamide on patients with pulmonary vascular disease: A randomized, double-blind, cross-over trial

    Get PDF
    Background: The carbonic anhydrase inhibitor acetazolamide stimulates ventilation through metabolic acidosis mediated by renal bicarbonate excretion. In animal models, acetazolamide attenuates acute hypoxia-induced pulmonary hypertension (PH), but its efficacy in treating patients with PH due to pulmonary vascular disease (PVD) is unknown. Methods: 28 PVD patients (15 pulmonary arterial hypertension, 13 distal chronic thromboembolic PH), 13 women, mean±SD age 61.6±15.0 years stable on PVD medications, were randomised in a double-blind crossover protocol to 5 weeks acetazolamide (250mg b.i.d) or placebo separated by a ≥2 week washout period. Primary endpoint was the change in 6-minute walk distance (6MWD) at 5 weeks. Additional endpoints included safety, tolerability, WHO functional class, quality of life, arterial blood gases, and hemodynamics (by echocardiography). Results: Acetazolamide had no effect on 6MWD compared to placebo (treatment effect: mean change [95%CI] -18 [-40 to 4]m, p=0.102) but increased arterial blood oxygenation through hyperventilation induced by metabolic acidosis. Other measures including pulmonary hemodynamics were unchanged. No severe adverse effects occurred, side effects that occurred significantly more frequently with acetazolamide vs. placebo were change in taste (22/0%), paraesthesia (37/4%) and mild dyspnea (26/4%). Conclusions: In patients with PVD, acetazolamide did not change 6MWD compared to placebo despite improved blood oxygenation. Some patients reported a tolerable increase in dyspnoea during acetazolamide treatment, related to hyperventilation, induced by the mild drug-induced metabolic acidosis. Our findings do not support the use of acetazolamide to improve exercise in patients with PVD at this dosing
    • …
    corecore