2 research outputs found

    Study on dynamic strength and liquefaction mechanism of silt soil in Castor earthquake prone areas under different consolidation ratios

    Get PDF
    Under the Castor earthquake, there is a risk of liquefaction instability of saturated tailings, and the evolution of dynamic pore pressure can indirectly reflect its instability process. Before applying dynamic loads, the static stress state of soil is one of the main factors affecting the development of soil dynamic strength and dynamic pore pressure, and there are significant differences in soil dynamic strength under different consolidation ratios. This paper conducted dynamic triaxial tests on saturated tailings silt with different consolidation ratios, and analyzed the dynamic strength variation and liquefaction mechanism of the samples using the discrete element method (PFC3D). The results showed that 1) as the Kcā€² gradually increased, and there was a critical consolidation ratio Kcā€² during the development of the dynamic strength of the sample. The specific value of Kcā€² was related to the properties and stress state of saturated sand. The Kcā€² in this research was about 1.9. When Kc < 1.9, dynamic strength was increased with the increase in Kc; when Kc > 1.9, dynamic strength was decreased with the Kc. 2) Under the impact of cyclic load, when samples were normally consolidated (Kc =1), the pore water pressure would tend to be equal to the confining pressure to cause soil liquefaction. In the case of eccentric consolidation (Kc > 1), the pore water pressure would be less than the confining pressure, thus, the soil liquefaction would not be induced, and the pore pressure value would decrease with the increase of consolidation ratio. This paper provides engineering guidance value for the study of dynamic strength and liquefaction mechanism of tailings sand and silt in Castor earthquake prone areas under different consolidation ratios

    Analysis of the Dynamic Stability of Tailing Dams: An Experimental Study on the Dynamic Characteristics of Tailing Silt

    No full text
    With the improvement in tailing mining-grade requirements and in mineral processing technology, tailing materials tend to be fine-grained. Under the action of earthquakes, a tailing dam is prone to liquefaction, which endangers the safety and stability of the dam. To further explore the dynamic properties of tailing silt under cyclic stress, through a series of dynamic triaxial experiments, we investigated the growth of the hysteresis curve, the development of pore pressure, and the energy dissipation law of tailing silt. The experimental findings indicated that increasing the density of the sample significantly improves its liquefaction resistance and the pore pressure development curve can be fitted using the BiDoseResp function. At the same cyclic stress ratio, the sampleā€™s anti-liquefaction strength did not rise monotonically with increasing confining pressure but changed variably at values near a specified low confining pressure; when the sample density rose under the same settings, the specific confining pressure reduced. We also further discussed the evolution law of the stressā€“strain curves of tailing silt. The results further explored the dynamic characteristics of tailing silt, which can provide some reference for the seismic design and reinforcement measures of many fine-grained tailing dams
    corecore