430 research outputs found
T helper type 1–specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-γ promoter are Stat4 dependent
Transcriptional competence of the interferon-γ (IFN-γ) locus is enhanced as Th1 effectors develop from naive CD4 T lymphocytes; conversely, this gene is repressed during Th2 differentiation. We now show that the Switch (Swi)–sucrose nonfermenter (SNF) component Brahma-related gene 1 (Brg1) is recruited, and positioned nucleosomes are remodeled, in a Th1-specific manner that is dependent on the transcription factor Stat4 and calcineurin phosphatase activity. Interference with specific components of mammalian Swi–SNF complexes decreased CD4 T cell differentiation into IFN-γ–positive Th1 cells. These findings reveal a collaborative mechanism of IFN-γ gene regulation during Th1 differentiation and suggest that a Th1-specific chromatin structure is created by early recruitment of Swi–SNF complexes and nucleosome remodeling dependent on Stat4 and calcineurin activation
Application of TiO2 Nanotubes Gas Sensors in Online Monitoring of SF6 Insulated Equipment
Titanium dioxide nanotube arrays (TNTAs) are a typical three-dimensional nanomaterial. TNTA has rich chemical and physical properties and low manufacturing costs. Thus, TNTA has broad application prospects. In recent years, research has shown that because of its large specific surface area and nanosize effect, the TNTAs have an enormous potential for development compared with other nanostructure forms in fields such as light catalysis, sensor, and solar batteries. TNTAs have become the hotspot of international nanometer material research. The tiny gas sensor made from TNTA has several advantages, such as fast response, high sensitivity, and small size. Several scholars in this field have achieved significant progress. As a sensitive material, TNTA is used to test O2, NO2, H2, ethanol, and other gases. In this chapter, three SF6 decomposed gases, namely SO2, SOF2 and SO2F2, are chosen as probe gases because they are the main by-products in the decomposition of SF6 under PD. Then, the adsorption behaviors of these gases on different anatase (101) surfaces including intrinsic, Pt-doped and Au-doped, are studied using the first principles density functional theory (DFT) calculations. The simulation results can be used as supplement for gas-sensing experiments of TNTA gas sensors. This work is expected to add insights into the fundamental understanding of interactions between gases and TNTA surfaces for better sensor design
The SF6 Decomposition Mechanism: Background and Significance
Gas Insulated Switchgear (GIS) has been widely used in substations. The insulating medium used in GIS is sulfur hexafluoride (SF6) gas. However, the internal insulation defect existed in GIS would inevitably lead to partial discharge (PD), and cause the composition of SF6 to SOF2, SO2F2 and SO2 and other characteristic component gases. The decomposition phenomenon would greatly reduce the insulation performance of SF6 insulated equipment, and even paralyze the whole power supply system. In this chapter, we first discuss the objective existence, decomposition mechanism and harmness of insulation defects. Then the methods for insulation defects detection used to avoid the insulation accidents are introduced. Comparing all of the detection methods, diagnosing the insulation defect through analyzing the decomposed gases of SF6 by chemical gas sensors is the optimal method due to its advantages, such as high detection accuracy and stability, signifying the importance of developing chemical gas sensor used in SF6 insulated equipment. In conclusion, there kinds of gas sensor material, carbon nanotubes, graphene, are chosen as the gas sensing materials to build specific gas sensors for detecting each kind of SF6 decomposed gases, and then enhance the gas sensitivity and selectivity by material modification
Typical Internal Defects of Gas-Insulated Switchgear and Partial Discharge Characteristics
Gas-insulated switchgear (GIS) is a common electrical equipment, which uses sulfur hexafluoride (SF6) as insulating medium instead of traditional air. It has good reliability and flexibility. However, GIS may have internal defects and partial discharge (PD) is then induced. PD will cause great harm to GIS and power system. Therefore, it is of great importance to study the intrinsic characteristics and detection of PD for online monitoring. In this chapter, typical internal defects of GIS and the PD characteristics are discussed. Several detection methods are also presented in this chapter including electromagnetic method, chemical method, and optical method
Identification of metabolism pathways directly regulated by sigma54 factor in Bacillus thuringiensis
Sigma54 (σ54) normally regulates nitrogen and carbon utilization in bacteria. Promoters that are σ54-dependent are highly conserved and contain short sequences located at the −24 and −12 positions upstream of the transcription initiation site. σ54 requires regulatory proteins known as bacterial enhancer-binding proteins (bEBPs) to activate gene transcription. We show that σ54 regulates the capacity to grow on various nitrogen sources using a Bacillus thuringiensis HD73 mutant lacking the sigL gene encoding σ54 (ΔsigL). A 2-fold-change cutoff and a false discovery rate cutoff of P < 0.05 were used to analyze the DNA microarray data, which revealed 255 genes that were downregulated and 121 that were upregulated in the ΔsigL mutant relative to the wild-type HD73 strain. The σ54 regulon (stationary phase) was characterized by DNA microarray, bioinformatics, and functional assay; 16 operons containing 47 genes were identified whose promoter regions contain the conserved −12/−24 element and whose transcriptional activities were abolished or reduced in the ΔsigL mutant. Eight σ54-dependent transcriptional bEBPs were found in the Bt HD73 genome, and they regulated night σ54-dependent promoters.The metabolic pathways activated by σ54 in this process have yet to be identified in Bacillus thuringiensis; nonetheless, the present analysis of the σ54 regulon provides a better understanding of the physiological roles of σ factors in bacteria
The GUA-Speech System Description for CNVSRC Challenge 2023
This study describes our system for Task 1 Single-speaker Visual Speech
Recognition (VSR) fixed track in the Chinese Continuous Visual Speech
Recognition Challenge (CNVSRC) 2023. Specifically, we use intermediate
connectionist temporal classification (Inter CTC) residual modules to relax the
conditional independence assumption of CTC in our model. Then we use a
bi-transformer decoder to enable the model to capture both past and future
contextual information. In addition, we use Chinese characters as the modeling
units to improve the recognition accuracy of our model. Finally, we use a
recurrent neural network language model (RNNLM) for shallow fusion in the
inference stage. Experiments show that our system achieves a character error
rate (CER) of 38.09% on the Eval set which reaches a relative CER reduction of
21.63% over the official baseline, and obtains a second place in the challenge.Comment: CNVSRC 2023 Challeng
The Influence Factors Analysis of Abrasiveness Based on the Grey Theory
Aimed at the phenomenon of many factors affecting rock abrasiveness, classification is not clear, and the influences of each factor on abrasiveness have different increase or decrease, different weights, and the influence mechanism are also different, in addition there may be a mutual influence between various factors, this paper takes into account the mutual influence between various factors and the weight of influence on abrasiveness, found out the main influence of abrasiveness by correlation analysis and grey correlation degree, so that guide the field better work by the main influence. Key words: Rock abrasiveness; Main influence; Correlation analysis; Grey correlation degre
Comparative Study of Materials to SF6 Decomposition Components
In order to judge the inside insulation fault of SF6 insulated equipment, the gas-sensing properties to a series of characteristic SF6 decomposition components, SOF2, SO2F2, SO2, H2S, CF4, HF, and SF6, have been studied. In this study, a comparative study of these gas-sensing materials has been made in theoretical and experimental fields to find the optimal gas-sensing material, and put forward the effective approaches to improve the gas-sensing properties of materials
- …