20 research outputs found
Mepolizumab in the management of severe eosinophilic asthma in adults: current evidence and practical experience
Asthma is a chronic inflammatory condition involving the airways with varying pathophysiological mechanisms, clinical symptoms and outcomes, generally controlled by conventional therapies including inhaled corticosteroids and long-acting β 2 agonists. However, these therapies are unable to successfully control symptoms in about 5–10% of severe asthma patients. Atopic asthma, characterized by high immunoglobulin (Ig)E or eosinophilia, represents about 50% of asthmatic patients. Interleukin (IL)-5 is the main cytokine responsible of activation of eosinophils, hence therapeutic strategies have been investigated and developed for clinical use. Biologics targeting IL-5 and its receptor (first mepolizumab and subsequently, reslizumab and benralizumab), have been recently approved and used as add-on therapy for severe eosinophilic asthma resulting in a reduction in the circulating eosinophil count, improvement in lung function and exacerbation reduction in asthma patients. Despite these biologics having been approved for stratified severe asthma patients that remain uncontrolled with high doses of conventional therapy, a number of patients may be eligible for more than one biologic. Presently, the lack of head-to-head studies comparing the biological agents among themselves and with conventional therapy make the choice of optimal therapy for each patient a challenge for clinicians. Moreover, discontinuation of these treatments, implications for efficacy or adverse events, in particular in long-term treatment, and needs for useful biomarkers are still matters of debate. In this review we evaluate to date, the evidence on mepolizumab that seems to demonstrate it is a well-tolerated and efficacious regimen for use in severe eosinophilic asthma, though more studies are still required
Dual-drugs delivery in Solid Lipid Nanoparticles for the treatment of Candida albicans mycosis
Supplementary material related to this article can be found, in the online version, at doi: https://doi.org/10.1016/j.colsurfb.2019.110705.Nowadays, a combinatorial drug delivery system that simultaneously transports two or more drugs to the targeted site in a human body, also recognized as a dual-drugs delivery system, represents a promising strategy to overcome drug resistance. Solid lipid nanoparticles loaded with clotrimazole (CLZ) and alphalipolic acid (ALA), considered as an effective agent in the reduction of reactive oxygen species, can enhance anti-infective immunity being proposed as a non-toxic and mainly non-allergic dual-drugs delivery system. In this study, uncoated and cationic CLZ-ALA-loaded SLN were prepared and compared. Suspensions with a narrow size distribution of particles of mean size below 150?nm were obtained, having slight negative or highly positive zeta potential values, due to the presence of the cationic lipid, which also increased nanoparticles stability, as confirmed by Turbiscan® results. Calorimetric studies confirmed the rationale of separately delivering the two drugs in a dual-delivery system. Furthermore, they confirmed the formation of SLN, without significant variation in presence of the cationic lipid. In vitro release studies showed a prolonged drug release without the occurrence of any burst effect. In vitro studies performed on 25 strains of Candida albicans showed the antimicrobial drug activity was not altered when it was loaded into lipid nanoparticles. The study has proved the successfully encapsulation of CLZ and ALA in solid lipid nanoparticles that may represent a promising strategy to combine ALA protective effect in the treatment with CLZ.This research was financed by Research Funding for University of Catania, under Project Piano per la Ricerca 2016-2018 – Linea Di Intervento2“DotazioneOrdinaria”cod.57722172106.info:eu-repo/semantics/publishedVersio
Development of associational fiber tracts in fetal human brain: a cadaveric laboratory investigation
The advent of diffusion tensor imaging (DTI) in addition to cadaveric brain dissection allowed a comprehensive description of an adult human brain. Nonetheless, the knowledge of the development of the internal architecture of the brain is mostly incomplete. Our study aimed to provide a description of the anatomical variations of the major associational bundles, among fetal and early post-natal periods. Seventeen formalin-fixed fetal human brains were enrolled for sulci analysis, and 13 specimens were dissected under the operating microscope, using Klingler's technique. Although fronto-temporal connections could be observed in all stages of development, a distinction between the uncinate fascicle, and the inferior fronto-occipital fascicle was clear starting from the early preterm period (25-35 post-conceptional week). Similarly, we were consistently able to isolate the periatrial white matter that forms the sagittal stratum (SS), with no clear distinction among SS layers. Arcuate fascicle and superior longitudinal fascicle were isolated only at the late stage of development without a reliable description of their entire course. The results of our study demonstrated that, although white matter is mostly unmyelinated among fetal human brains, cadaveric dissection can be performed with consistent results. Furthermore, the stepwise development of the associational fiber tracts strengthens the hypothesis that anatomy and function run in parallel, and higher is the cognitive functions subserved by an anatomical structure, later the development of the fascicle. Further histological-anatomical-DWI investigations are required to appraise and explore this topic
Immunohistochemistry for thymidine kinase-1 (Tk1): A potential tool for the prognostic stratification of breast cancer patients
Breast cancer (BC) is the most frequent non-cutaneous malignancy in women. Histological grade, expression of estrogen and progesterone receptors (ER and PgR), overexpression/amplification of the human epidermal growth factor receptor 2 (HER2) oncogene, and proliferative activity measured with ki-67 provide important information on the biological features of BC and guide treatment choices. However, a biomarker that allows a more accurate prognostic stratification is still lacking. Thymidine kinase-1 (TK1), a ubiquitous enzyme involved in the pyrimidine nucleotide recovery pathway, is a cell-proliferation marker with potential prognostic and predictive impacts in BC. Eighty (80) cases of invasive BC with a long-term follow-up were retrospectively selected, and clinicopathological data were collected for each patient. TK1 tissue expression was evaluated immunohistochemically. Data suggested that TK1 expression levels are positively correlated with ER and PgR expression, and negatively correlated with HER2 status and the impact on patients' distant recurrence-free survival (DRFS): in detail, among patients undergoing adjuvant chemotherapy, lower TK1 levels are correlated with better DRFS. Therefore, these results contribute to furthering the knowledge of TK1, suggesting a possible and important role of this enzyme as a biomarker in the stratification of BC patients