22 research outputs found

    Gene Expression Profiling of Preovulatory Follicle in the Buffalo Cow: Effects of Increased IGF-I Concentration on Periovulatory Events

    Get PDF
    The preovulatory follicle in response to gonadotropin surge undergoes dramatic biochemical, and morphological changes orchestrated by expression changes in hundreds of genes. Employing well characterized bovine preovulatory follicle model, granulosa cells (GCs) and follicle wall were collected from the preovulatory follicle before, 1, 10 and 22 h post peak LH surge. Microarray analysis performed on GCs revealed that 450 and 111 genes were differentially expressed at 1 and 22 h post peak LH surge, respectively. For validation, qPCR and immunocytochemistry analyses were carried out for some of the differentially expressed genes. Expression analysis of many of these genes showed distinct expression patterns in GCs and the follicle wall. To study molecular functions and genetic networks, microarray data was analyzed using Ingenuity Pathway Analysis which revealed majority of the differentially expressed genes to cluster within processes like steroidogenesis, cell survival and cell differentiation. In the ovarian follicle, IGF-I is established to be an important regulator of the above mentioned molecular functions. Thus, further experiments were conducted to verify the effects of increased intrafollicular IGF-I levels on the expression of genes associated with the above mentioned processes. For this purpose, buffalo cows were administered with exogenous bGH to transiently increase circulating and intrafollicular concentrations of IGF-I. The results indicated that increased intrafollicular concentrations of IGF-I caused changes in expression of genes associated with steroidogenesis (StAR, SRF) and apoptosis (BCL-2, FKHR, PAWR). These results taken together suggest that onset of gonadotropin surge triggers activation of various biological pathways and that the effects of growth factors and peptides on gonadotropin actions could be examined during preovulatory follicle development

    Suboptimal herd performance amplifies the spread of infectious disease in the cattle industry

    Get PDF
    Farms that purchase replacement breeding cattle are at increased risk of introducing many economically important diseases. The objectives of this analysis were to determine whether the total number of replacement breeding cattle purchased by individual farms could be reduced by improving herd performance and to quantify the effects of such reductions on the industry-level transmission dynamics of infectious cattle diseases. Detailed information on the performance and contact patterns of British cattle herds was extracted from the national cattle movement database as a case example. Approximately 69% of beef herds and 59% of dairy herds with an average of at least 20 recorded calvings per year purchased at least one replacement breeding animal. Results from zero-inflated negative binomial regression models revealed that herds with high average ages at first calving, prolonged calving intervals, abnormally high or low culling rates, and high calf mortality rates were generally more likely to be open herds and to purchase greater numbers of replacement breeding cattle. If all herds achieved the same level of performance as the top 20% of herds, the total number of replacement beef and dairy cattle purchased could be reduced by an estimated 34% and 51%, respectively. Although these purchases accounted for only 13% of between-herd contacts in the industry trade network, they were found to have a disproportionately strong influence on disease transmission dynamics. These findings suggest that targeting extension services at herds with suboptimal performance may be an effective strategy for controlling endemic cattle diseases while simultaneously improving industry productivity
    corecore