41 research outputs found
Blinded and unblinded hypohydration similarly impair cycling time trial performance in the heat in trained cyclists
Knowledge of hydration status may contribute to hypohydration-induced exercise performance decrements, therefore, this study compared blinded and unblinded hypohydration on cycling performance. Fourteen trained, non-heat acclimated cyclists (age 25 ± 5 y; V̇O2peak 63.3 ± 4.7 mL∙kg-1∙min-1; cycling experience 6 ± 3 y) were pair-matched to blinded (B) or unblinded (UB) groups. After familiarisation, subjects completed euhydrated (B-EUH; UB-EUH) and hypohydrated (B-HYP; UB-HYP) trials in the heat (31˚C); 120 min cycling preload (50% Wpeak) and a time trial (~15 min). During the preload of all trials, 0.2 mL water∙kg body mass-1 was ingested every 10 min, with additional water provided during EUH trials to match sweat losses. To blind the B group, a nasogastric tube was inserted in both trials and used to provide water in B-EUH. The preload induced similar ( P=0.895) changes in body mass between groups (B-EUH -0.6 ± 0.5%; B-HYP -3.0 ± 0.5%; UB-EUH -0.5 ± 0.3%; UB-HYP -3.0 ± 0.3%). All variables responded similarly between B and UB groups ( P≥0.558), except thirst ( P=0.004). Changes typical of hypohydration (increased heart rate, RPE, gastrointestinal temperature, serum osmolality and thirst, decreased plasma volume; P≤0.017) were apparent in HYP by 120 min. Time trial performance was similar between groups ( P=0.710) and slower ( P≤0.013) with HYP for B (B-EUH 903 ± 89 s; B-HYP 1008 ± 121 s; -11.4%) and UB (UB-EUH 874 ± 108 s; UB-HYP 967 ± 170 s; -10.1%). Hypohydration of ~3% body mass impairs time trial performance in the heat, regardless of knowledge of hydration status
Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine
This study examined effects of 4 weeks of caffeine supplementation on endurance performance. Eighteen low-habitual caffeine consumers ( 0.05). Before supplementation, all participants completed one V̇O2peak test, one practice trial and 2 experimental trials (acute 3 mg · kg−1 caffeine [precaf] and placebo [testpla]). During the supplementation period a second V̇O2peak test was completed on day 21 before a final, acute 3 mg · kg−1 caffeine trial (postcaf) on day 29. Trials consisted of 60 min cycle exercise at 60% V̇O2peak followed by a 30 min performance task. All participants produced more external work during the precaf trial than testpla, with increases in the caffeine (383.3 ± 75 kJ vs. 344.9 ± 80.3 kJ; Cohen’s d effect size [ES] = 0.49; P = 0.001) and placebo (354.5 ± 55.2 kJ vs. 333.1 ± 56.4 kJ; ES = 0.38; P = 0.004) supplementation group, respectively. This performance benefit was no longer apparent after 4 weeks of caffeine supplementation (precaf: 383.3 ± 75.0 kJ vs. postcaf: 358.0 ± 89.8 kJ; ES = 0.31; P = 0.025), but was retained in the placebo group (precaf: 354.5 ± 55.2 kJ vs. postcaf: 351.8 ± 49.4 kJ; ES = 0.05; P > 0.05). Circulating caffeine, hormonal concentrations and substrate oxidation did not differ between groups (all P > 0.05). Chronic ingestion of a low dose of caffeine develops tolerance in low-caffeine consumers. Therefore, individuals with low-habitual intakes should refrain from chronic caffeine supplementation to maximise performance benefits from acute caffeine ingestion
24 h severe energy restriction impairs post-prandial glycaemic control in young, lean males
Intermittent energy restriction (IER) involves short periods of severe energy restriction interspersed with periods of adequate energy intake, and can induce weight loss. Insulin sensitivity is impaired by short-term, complete energy restriction, but the effects of IER are not well known. In randomised order, 14 lean men (age: 25 (SD 4) y; BMI: 24 (SD 2) kg·m-2; body fat: 17 (4) %) consumed 24 h diets providing 100% (10441 (SD 812) kJ; EB) or 25% (2622 (SD 204) kJ; ER) of estimated energy requirements, followed by an oral glucose tolerance test (OGTT; 75g glucose drink) overnight fasted. Plasma/ serum glucose, insulin, non-esterified fatty acids (NEFA), glucagon-like peptide-1 (GLP-1), glucose-dependant insulinotropic peptide (GIP) and fibroblast growth factor-21 (FGF21) were assessed before and after (0 h) each 24 h dietary intervention, and throughout the 2 h OGTT. Homeostatic model assessment of insulin resistance (HOMA2-IR) assessed the fasted response and incremental (iAUC) or total (tAUC) area under the curve were calculated during the OGTT. At 0 h, HOMA2-IR was 23% lower after ER compared to EB (P<0.05). During the OGTT, serum glucose iAUC (P<0.001) serum insulin iAUC (P<0.05) and plasma NEFA tAUC (P<0.01) were greater during ER, but GLP-1 (P=0.161), GIP (P=0.473) and FGF21 (P=0.497) tAUC were similar between trials. These results demonstrate that severe energy restriction acutely impairs postprandial glycaemic control in lean men, despite reducing HOMA2-IR. Chronic intervention studies are required to elucidate the long-term effects of IER on indices of insulin sensitivity, particularly in the absence of weight loss
Recommended from our members
National Standards for Diabetes Self-Management Education
Diabetes self-management education (DSME) is a critical element of care for all people with diabetes and is necessary in order to improve patient outcomes. The National Standards for DSME are designed to define quality diabetes self-management education and to assist diabetes educators in a variety of settings to provide evidence-based education. Because of the dynamic nature of health care and diabetes-related research, these Standards are reviewed and revised approximately every 5 years by key organizations and federal agencies within the diabetes education community. A Task Force was jointly convened by the American Association of Diabetes Educators and the American Diabetes Association in the summer of 2006. Additional organizations that were represented included the American Dietetic Association, the Veteran's Health Administration, the Centers for Disease Control and Prevention, the Indian Health Service, and the American Pharmaceutical Association. Members of the Task Force included a person with diabetes; several health services researchers/behaviorists, registered nurses, and registered dietitians; and a pharmacist. The Task Force was charged with reviewing the current DSME standards for their appropriateness, relevance, and scientific basis. The Standards were then reviewed and revised based on the available evidence and expert consensus. The committee convened on 31 March 2006 and 9 September 2006, and the Standards were approved 25 March 2007
The effect of specific bioactive collagen peptides on function and muscle remodeling during human resistance training
Aim: Bioactive collagen peptides (CP) have been suggested to augment the functional, structural (size and architecture), and contractile adaptations of skeletal muscle to resistance training (RT), but with limited evidence. This study aimed to determine if CP vs. placebo (PLA) supplementation enhanced the functional and underpinning structural, and contractile adaptations after 15 weeks of lower body RT. Methods: Young healthy males were randomized to consume either 15 g of CP (n = 19) or PLA (n = 20) once every day during a standardized program of progressive knee extensor, knee flexor, and hip extensor RT 3 times/wk. Measurements pre‐ and post‐RT included: knee extensor and flexor isometric strength; quadriceps, hamstrings, and gluteus maximus volume with MRI; evoked twitch contractions, 1RM lifting strength, and architecture (with ultrasound) of the quadriceps. Results: Percentage changes in maximum strength (isometric or 1RM) did not differ between‐groups (0.684 ≤ p ≤ 0.929). Increases in muscle volume were greater (quadriceps 15.2% vs. 10.3%; vastus medialis (VM) 15.6% vs. 9.7%; total muscle volume 15.7% vs. 11.4%; [all] p ≤ 0.032) or tended to be greater (hamstring 16.5% vs. 12.8%; gluteus maximus 16.6% vs. 12.9%; 0.089 ≤ p ≤ 0.091) for CP vs. PLA. There were also greater increases in twitch peak torque (22.3% vs. 12.3%; p = 0.038) and angle of pennation of the VM (16.8% vs. 5.8%, p = 0.046), but not other muscles, for CP vs. PLA. Conclusions: CP supplementation produced a cluster of consistent effects indicating greater skeletal muscle remodeling with RT compared to PLA. Notably, CP supplementation amplified the quadriceps and total muscle volume increases induced by RT
Substituting carbohydrate at lunch for added protein increases fat oxidation during subsequent exercise in healthy males
Context
How pre-exercise meal composition influences metabolic and health responses to exercise later in the day is currently unclear.
Objective
Examine the effects of substituting carbohydrate for protein at lunch on subsequent exercise metabolism, appetite, and energy intake.
Methods
Twelve healthy males completed three trials in randomized, counterbalanced order. Following a standardized breakfast (779 ± 66 kcal; ∼08:15), participants consumed a lunch (1186 ± 140 kcal; ∼13:15) containing either 0.2 g·kg-1 carbohydrate and ∼2 g·kg-1 protein (LO-CARB), 2 g·kg-1 carbohydrate and ∼0.4 g·kg-1 protein (HI-CARB), or fasted (FAST). Participants later cycled at ∼60% V̇O2peak for 1 h (∼16:15) and post-exercise ad-libitum energy intake was measured (∼18:30). Substrate oxidation, subjective appetite, and plasma concentrations of glucose, insulin, non-esterified fatty acids (NEFA), peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and acylated ghrelin (AG) were measured for 5 h post-lunch.
Results
Fat oxidation was greater during FAST (+11.66 ± 6.63 g) and LO-CARB (+8.00 ± 3.83 g) than HI-CARB (p < 0.001), with FAST greater than LO-CARB (+3.67 ± 5.07 g; p < 0.05). NEFA were lowest in HI-CARB and highest in FAST, with insulin demonstrating the inverse response (all p < 0.01). PYY and GLP-1 demonstrated a stepwise pattern, with LO-CARB greatest and FAST lowest (all p < 0.01). AG was lower during HI-CARB and LO-CARB versus FAST (p < 0.01). Energy intake in LO-CARB was lower than FAST (-383 ± 233 kcal; p < 0.001) and HI-CARB (-313 ± 284 kcal; p < 0.001).
Conclusion
Substituting carbohydrate for protein in a pre-exercise lunch increased fat oxidation, suppressed subjective and hormonal appetite, and reduced post-exercise energy intake
Recovering local structure information from high‐pressure total scattering experiments
High pressure is a powerful thermodynamic tool for exploring the structure and the phase behaviour of the crystalline state, and is now widely used in conventional crystallographic measurements. High‐pressure local structure measurements using neutron diffraction have, thus far, been limited by the presence of a strongly scattering, perdeuterated, pressure‐transmitting medium (PTM), the signal from which contaminates the resulting pair distribution functions (PDFs). Here, a method is reported for subtracting the pairwise correlations of the commonly used 4:1 methanol:ethanol PTM from neutron PDFs obtained under hydrostatic compression. The method applies a molecular‐dynamics‐informed empirical correction and a non‐negative matrix factorization algorithm to recover the PDF of the pure sample. Proof of principle is demonstrated, producing corrected high‐pressure PDFs of simple crystalline materials, Ni and MgO, and benchmarking these against simulated data from the average structure. Finally, the first local structure determination of α‐quartz under hydrostatic pressure is presented, extracting compression behaviour of the real‐space structure
Can programme theory be used as a 'translational tool’ to optimise health service delivery in a national early years’ initiative in Scotland: a case study
Background
Theory-based evaluation (TBE) approaches are heralded as supporting formative evaluation by facilitating increased use of evaluative findings to guide programme improvement. It is essential that learning from programme implementation is better used to improve delivery and to inform other initiatives, if interventions are to be as effective as they have the potential to be. Nonetheless, few studies describe formative feedback methods, or report direct instrumental use of findings resulting from TBE. This paper uses the case of Scotland’s, National Health Service, early years’, oral health improvement initiative (Childsmile) to describe the use of TBE as a framework for providing feedback on delivery to programme staff and to assess its impact on programmatic action.<p></p>
Methods
In-depth, semi-structured interviews and focus groups with key stakeholders explored perceived deviations between the Childsmile programme 'as delivered’ and its Programme Theory (PT). The data was thematically analysed using constant comparative methods. Findings were shared with key programme stakeholders and discussions around likely impact and necessary actions were facilitated by the authors. Documentary review and ongoing observations of programme meetings were undertaken to assess the extent to which learning was acted upon.<p></p>
Results
On the whole, the activities documented in Childsmile’s PT were implemented as intended. This paper purposefully focuses on those activities where variation in delivery was evident. Differences resulted from the stage of roll-out reached and the flexibility given to individual NHS boards to tailor local implementation. Some adaptations were thought to have diverged from the central features of Childsmile’s PT, to the extent that there was a risk to achieving outcomes. The methods employed prompted national service improvement action, and proposals for local action by individual NHS boards to address this.<p></p>
Conclusions
The TBE approach provided a platform, to direct attention to areas of risk within a national health initiative, and to agree which intervention components were 'core’ to its hypothesised success. The study demonstrates that PT can be used as a 'translational tool’ to facilitate instrumental use of evaluative findings to optimise implementation within a complex health improvement programme.<p></p>
Post-exercise rehydration: Comparing the efficacy of three commercial oral rehydration solutions
IntroductionThis study compared the efficacy of three commercial oral rehydration solutions (ORS) for restoring fluid and electrolyte balance, after exercise-induced dehydration.MethodHealthy, active participants (N = 20; ♀ = 3; age ∼27 y, V˙O2peak ∼52 ml/kg/min) completed three randomised, counterbalanced trials whereby intermittent exercise in the heat (∼36°C, ∼50% humidity) induced ∼2.5% dehydration. Subsequently, participants rehydrated (125% fluid loss in four equal aliquots at 0, 1, 2, 3 h) with a glucose-based (G-ORS), sugar-free (Z-ORS) or amino acid-based sugar-free (AA-ORS) ORS of varying electrolyte composition. Urine output was measured hourly and capillary blood samples collected pre-exercise, 0, 2 and 5 h post-exercise. Sodium, potassium, and chloride concentrations in urine, sweat, and blood were determined.ResultsNet fluid balance peaked at 4 h and was greater in AA-ORS (141 ± 155 ml) and G-ORS (101 ± 195 ml) than Z-ORS (−47 ± 208 ml; P ≤ 0.010). Only AA-ORS achieved positive sodium and chloride balance post-exercise, which were greater for AA-ORS than G-ORS and Z-ORS (P ≤ 0.006), as well as for G-ORS than Z-ORS (P ≤ 0.007) from 1 to 5 h.Conclusionwhen provided in a volume equivalent to 125% of exercise-induced fluid loss, AA-ORS produced comparable/superior fluid balance and superior sodium/chloride balance responses to popular glucose-based and sugar-free ORS