3 research outputs found

    Loss of brainstem white matter predicts onset and motor neuron symptoms in C9orf72 expansion carriers : a GENFI study

    No full text
    BACKGROUND AND OBJECTIVES: The C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD) and/or motor neuron disease (MND). Corticospinal degeneration has been described in post-mortem neuropathological studies in these patients, especially in those with MND. We used MRI to analyze white matter (WM) volumes in presymptomatic and symptomatic C9orf72 expansion carriers and investigated whether its measure may be helpful in predicting the onset of symptoms. METHODS: We studied 102 presymptomatic C9orf72 mutation carriers, 52 symptomatic carriers: 42 suffering from FTD and 11 from MND, and 75 non-carriers from the Genetic Frontotemporal dementia Initiative (GENFI). All subjects underwent T1-MRI acquisition. We used FreeSurfer to estimate the volume proportion of WM in the brainstem regions (midbrain, pons, and medulla oblongata). We calculated group differences with ANOVA tests and performed linear and non-linear regressions to assess group-by-age interactions. RESULTS: A reduced WM ratio was found in all brainstem subregions in symptomatic carriers compared to both noncarriers and pre-symptomatic carriers. Within symptomatic carriers, MND patients presented a lower ratio in pons and medulla oblongata compared with FTD patients. No differences were found between presymptomatic carriers and non-carriers. Clinical severity was negatively associated with the WM ratio. C9orf72 carriers presented greater age-related WM loss than non-carriers, with MND patients showing significantly more atrophy in pons and medulla oblongata. DISCUSSION: We find consistent brainstem WM loss in C9orf72 symptomatic carriers with differences related to the clinical phenotype supporting the use of brainstem measures as neuroimaging biomarkers for disease tracking

    Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia

    Get PDF
    Background: Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes accounting for most of the inheritance: C9orf72, GRN, and MAPT. Impaired synaptic health is a common mechanism in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular dysfunction within therapeutic trials. / Methods: A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presymptomatic (31 C9orf72, 23 GRN, 23 MAPT) and 55 symptomatic (26 C9orf72, 17 GRN, 12 MAPT) mutation carriers as well as 61 mutation-negative controls were measured using a microflow LC PRM-MS set-up targeting 15 synaptic proteins: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-synuclein, 14–3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped linear regression model, adjusting for age and sex. / Results: CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta-synuclein, gamma-synuclein, 14–3-3-eta, neurogranin, Rab GDI alpha, syntaxin-1B, syntaxin-7, and PEBP-1, with three other proteins increased in MAPT mutation carriers compared with the other genetic groups (AP-2 complex subunit beta, complexin-2, and 14–3-3 zeta/delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased compared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset. / Conclusions: Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multiple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is needed to understand how these markers change throughout the course of the disease

    Anomia is present pre-symptomatically in frontotemporal dementia due to MAPT mutations

    No full text
    corecore