1,425 research outputs found

    Designing Group Music Improvisation Systems:A Decade of Design Research in Education

    Get PDF
    In this article we discuss Designing Group Music Improvisation Systems (DGMIS), a design education activity that investigates the contemporary challenge design is facing when we go beyond single-user single-artefact interactions. DGMIS examines how to design for systems of interdependent artefacts and human actors, from the perspective of improvised music. We have explored this challenge in design research and education for over a decade in different Industrial Design education contexts, at various geographic locations, in several formats. In this article we describe our experiences and discuss our general observations, corrective measures, and lessons we learned for (teaching) the design of novel, interactive, systemic products

    Seeing Through Things:Exploring the Design Space of Privacy-Aware Data-Enabled Objects

    Get PDF
    Increasing amounts of sensor-augmented research objects have been used in design research. We call these objects Data-Enabled Objects, which can be integrated into daily activities capturing data about people's detailed whereabouts, behaviours, and routines. These objects provide data perspectives on everyday life for contextual design research. However, data-enabled objects are still computational devices with limited privacy awareness and nuanced data sharing. To better design data-enabled objects, we explore privacy design spaces by inviting 18 teams of undergraduate design students to re-design the same type of sensor-enabled home research camera. We developed the Connected Peekaboo Toolkit (CPT) to support the design teams in designing, building, and directly deploying their prototypes in real home studies. We conducted Thematic Analysis to analyze their outcomes which led us to interpret that privacy is not just an obstacle but can be a driver by unfolding an exploration of possible design spaces for data-enabled objects.</p

    Performance and cost evaluation to inform the design and implementation of Organic Rankine Cycles in New Zealand

    Get PDF
    The aim of this thesis is to evaluate ORC systems and technologies from an energy and economic perspective. ORC systems are a growing renewable electricity generation technology, but New Zealand has limited local skills and expertise for identifying ORC resource opportunities and subsequently developing suitable technologies at low cost. For this reason, this thesis researches ORC technology, resource types, and international development, with the aim to determine guidelines for how to cost-effectively develop ORC systems, and to make recommendations applicable to furthering their development within a New Zealand context. This thesis first uses two surveys, one of commercial ORC installations, and a second of economic evaluations of ORC systems in literature, to determine what resources and economic scenarios are supportive of commercial development. It is found that geothermal resources provide the largest share of ORC capacity, with biomass and waste-heat recovery (WHR) being developed more recently. The surveys also found that countries with high electricity prices or policy interventions have developed a wider range of resources using ORC systems. This thesis then undertakes an EROI evaluation of ORC electricity generation systems using a combination of top-down and process based methodologies. Various heat sources; geothermal, biomass, solar, and waste heat are evaluated in order to determine how the utilised resource can affect energy profitability. A wide range of EROIstnd values, from 3.4 – 22.7 are found, with solar resources offering the lowest EROIs, and geothermal systems the highest. Higher still EROI values are found to be obtainable with longer system lifetimes, especially for WHR systems. Specific engineering aspects of ORC design and technology such as high-side pressure, heat storage, modularity, superheating, pinch-point temperature difference, and turbine efficiency are evaluated in terms of economic performance, and a variety of general conclusions are made about each. It is found that total system thermo-economic optimisation may not lead to the highest possible EROI, depending on the objective function. Lastly, the effects of past and potential future changes to the markets and economies surrounding ORCs are explored, including the New Zealand electricity spot price, steel and aluminium prices, subsidies, and climate policy. Of the subsidy types explored, it is found that directly subsidising ORC system capital has the greatest effect on the economic performance of ORC systems, as measured by common metrics. In conclusion, this thesis finds that ORC systems have a limited applicability to New Zealand’s electricity market under current economic conditions outside of geothermal and off-grid generation, but changes to these conditions could potentially make their development more viable. The author recommends that favourable resources should be developed using systems that provide high efficiencies, beyond what might provide the best economic performance, in order to increase EROI, and reduce the future need for costly investments into increasingly less favourable resources

    Breaking up data-enabled design: expanding and scaling up for the clinical context

    Get PDF
    Data-enabled design (DED) is a promising new methodology for designing with users from within their own context in an iterative and hands-on fashion. However, the agile and flexible qualities of the methodology do not directly translate to every context. In this article, we reflect on the design process of an intelligent ecosystem, called ORBIT, and a proposed eval- uative study planned with it. This was part of a DED project in collaboration with a medical hospital to study the post-operative behavior in the (remote) context of bariatric patients. The design and preparation of this project and the process towards an eventual study rejection from the medical ethical committee (METC) provide rich insights into (1) what it means to conduct DED research in a clinical context, and (2) where the boundaries of the method might lie in this specific application area. We highlight insights from carefully designing the substantial infrastructure for the study, and how different aspects of DED translated less easily to the clinical context. We analyze the proposed study setup through the lenses of several modifications we made to DED and further reflect on how to expand and scale up the methodology and adapt the process for the clinical context

    Designing auditory display of heart rate variability in biofeedback context

    Get PDF
    Presented at the 21st International Conference on Auditory Display (ICAD2015), July 6-10, 2015, Graz, Styria, Austria.This paper presents a set of real-time sonifications of heart rate variability in the context of biofeedback. The objective of the study is to explore new ways in providing biofeedback information rather than the typical graphic displays in medical products. Four different auditory displays were created by mapping heart rate variability to timing variations of the sound. In the experiment, ten subjects completed five tests of biofeedback training with four auditory displays and one graphic display. During all tests, the heart rate variability and respiration data were recorded for evaluation of the effectiveness of biofeedback training. Subjects were also asked to rate their subjective experience after each test. The results suggest that most subjects could achieve a similar training effect with auditory feedback compared to graphic feedback. Although the user experience of auditory feedback did not meet our expectations, some subjects were enthusiastic about the direct auditory feedback. We discuss these results and provide a description of what is learnt from our design explorations

    HeyTAP: Bridging the Gaps Between Users' Needs and Technology in IF-THEN Rules via Conversation

    Get PDF
    In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of IF-THEN rules. Unfortunately, how to make such a personalization effective and appreciated is still largely unknown. On the one hand, contemporary platforms to compose IF-THEN rules adopt representation models that strongly depend on the exploited technologies, thus making end-user personalization a complex task. On the other hand, the usage of technology-independent rules envisioned by recent studies opens up new questions, and the identification of available connected entities able to execute abstract users' needs become crucial. To this end, we present HeyTAP, a conversational and semantic-powered trigger-action programming platform able to map abstract users' needs to executable IF-THEN rules. By interacting with a conversational agent, the user communicates her personalization intentions and preferences. User's inputs, along with contextual and semantic information related to the available connected entities, are then used to recommend a set of IF-THEN rules that satisfies the user's needs. An exploratory study on 8 end users preliminary confirms the effectiveness and the appreciation of the approach, and shows that HeyTAP can successfully guide users from their needs to specific rules
    corecore