23 research outputs found
An In-Depth Review of Niraparib in Ovarian Cancer: Mechanism of Action, Clinical Efficacy and Future Directions.
Niraparib is an oral, potent, highly selective poly-ADP ribose polymerase 1 (PARP1) and PARP2 inhibitor. In most developed countries, it is approved as a maintenance treatment for epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients with complete or partial response to platinum-based therapy. These approvals are based on results of randomised, double-blind, placebo-controlled trials, particularly the NOVA trial and more recently the PRIMA trial. In this comprehensive review, we delve into the scientific basis of PARP inhibition, discussing both preclinical and clinical data which have led to the current approval status of niraparib. We also discuss ongoing trials and biological rationale of combination treatments involving niraparib, with particular focus on antiangiogenic drugs, immune checkpoint inhibitors and cyclic GMP-AMP synthase stimulator of interferon genes (cGAS/STING) pathway. In addition, we reflect on potential strategies and challenges of utilising current biomarkers for treatment selection of patients to ensure maximal benefit
A Phase 1 trial of human telomerase reverse transcriptase (hTERT) vaccination combined with therapeutic strategies to control immune-suppressor mechanisms
The presence of inhibitory immune cells and difficulty in generating activated effector T-cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T-cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T-cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T-cells with effector phenotypes. The in vitro re-challenge of T-cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T-cells with specificity for hTERT. However, a population of exhausted PD-1 + cytotoxic T-cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T-cell population
Safety and anti-tumour activity of the IgE antibody MOv18 in patients with advanced solid tumours expressing folate receptor-alpha: a phase I trial
All antibodies approved for cancer therapy are monoclonal IgGs but the biology of IgE, supported by comparative preclinical data, offers the potential for enhanced effector cell potency. Here we report a Phase I dose escalation trial (NCT02546921) with the primary objective of exploring the safety and tolerability of MOv18 IgE, a chimeric first-in-class IgE antibody, in patients with tumours expressing the relevant antigen, folate receptor-alpha. The trial incorporated skin prick and basophil activation tests (BAT) to select patients at lowest risk of allergic toxicity. Secondary objectives were exploration of anti-tumour activity, recommended Phase II dose, and pharmacokinetics. Dose escalation ranged from 70 μg–12 mg. The most common toxicity of MOv18 IgE is transient urticaria. A single patient experienced anaphylaxis, likely explained by detection of circulating basophils at baseline that could be activated by MOv18 IgE. The BAT assay was used to avoid enrolling further patients with reactive basophils. The safety profile is tolerable and maximum tolerated dose has not been reached, with evidence of anti-tumour activity observed in a patient with ovarian cancer. These results demonstrate the potential of IgE therapy for cancer
Recommended from our members
Ultrasound-guided targeted biopsies of CT-based radiomic tumour habitats: technical development and initial experience in metastatic ovarian cancer
Funder: Horizon 2020; doi: http://dx.doi.org/10.13039/501100007601Funder: Cancer Research UKFunder: Mark Foundation For Cancer Research; doi: http://dx.doi.org/10.13039/100014599Abstract: Purpose: To develop a precision tissue sampling technique that uses computed tomography (CT)–based radiomic tumour habitats for ultrasound (US)-guided targeted biopsies that can be integrated in the clinical workflow of patients with high-grade serous ovarian cancer (HGSOC). Methods: Six patients with suspected HGSOC scheduled for US-guided biopsy before starting neoadjuvant chemotherapy were included in this prospective study from September 2019 to February 2020. The tumour segmentation was performed manually on the pre-biopsy contrast-enhanced CT scan. Spatial radiomic maps were used to identify tumour areas with similar or distinct radiomic patterns, and tumour habitats were identified using the Gaussian mixture modelling. CT images with superimposed habitat maps were co-registered with US images by means of a landmark-based rigid registration method for US-guided targeted biopsies. The dice similarity coefficient (DSC) was used to assess the tumour-specific CT/US fusion accuracy. Results: We successfully co-registered CT-based radiomic tumour habitats with US images in all patients. The median time between CT scan and biopsy was 21 days (range 7–30 days). The median DSC for tumour-specific CT/US fusion accuracy was 0.53 (range 0.79 to 0.37). The CT/US fusion accuracy was high for the larger pelvic tumours (DSC: 0.76–0.79) while it was lower for the smaller omental metastases (DSC: 0.37–0.53). Conclusion: We developed a precision tissue sampling technique that uses radiomic habitats to guide in vivo biopsies using CT/US fusion and that can be seamlessly integrated in the clinical routine for patients with HGSOC. Key Points: • We developed a prevision tissue sampling technique that co-registers CT-based radiomics–based tumour habitats with US images. • The CT/US fusion accuracy was high for the larger pelvic tumours (DSC: 0.76–0.79) while it was lower for the smaller omental metastases (DSC: 0.37–0.53)
Neoadjuvant treatment for newly diagnosed advanced ovarian cancer: where do we stand and where are we going?
Newly diagnosed high grade serous epithelial ovarian cancer (EOC) patients are treated with radical surgery followed by adjuvant platinum and taxane combination chemotherapy. In EOC patients where upfront surgery is contraindicated for medical reasons (e.g., comorbidities or poor performance status), or where complete cytoreduction cannot be achieved, neoadjuvant chemotherapy (NACT) prior to interval debulking surgery (IDS), and adjuvant chemotherapy is an alternative therapeutic option. There is currently a lack of consensus about who are the best candidates to receive NACT, and some authors have even suggested that this approach could be harmful in a subset of patients via promotion of early chemoresistance. Standard and novel imaging techniques together with a better molecular characterization of the disease have the potential to improve selection of patients, but ultimately well designed randomised clinical trials are needed to guide treatment decisions in this setting. The advent of new and effective treatment options (antiangiogenics and PARP inhibitors), now approved for use in the first line and relapse settings has opened the way to clinical trials aiming to investigate these agents as substitute or in addition to chemotherapy in the neoadjuvant setting in molecularly selected EOC patients. Here, we will review the evidence supporting the use of NACT in newly diagnosed EOCs, data highlighting the importance of its use in selected patients, new imaging methodologies and biomarkers that can guide patient selection
A Feasibility Study of the Therapeutic Response and Durability of Short-term Androgen-targeted Therapy in Early Prostate Cancer Managed with Surveillance: The Therapeutics in Active Prostate Surveillance (TAPS01) Study.
BACKGROUND: Active surveillance (AS) is a preferred management option for men with prostate cancer with favourable prognosis. However, nearly half of men on AS switch to treatment within 5 years, so therapeutic strategies to prevent or delay disease progression could be considered. The androgen receptor is the pre-eminent oncogenic driver in prostate cancer. OBJECTIVE: To explore image-based tumour responses and the patient impact of short-duration androgen-targeted therapy (ATT) to abrogate disease progression during AS. DESIGN SETTING AND PARTICIPANTS: Men on AS with Cambridge Prognostic Group 1 & 2 (low and favourable intermediate risk) prostate cancer and lesions visible on magnetic resonance imaging (MRI) were recruited to an open-label, single-centre, phase 2 feasibility study of short-term ATT (the TAPS01 study). INTERVENTION: Apalutamide 240 mg was administered for 90 days. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: MRI-measured tumour volume (TV), gland volume (GV), and the TV/GV ratio were calculated at baseline, at day 90 (end of treatment), and at 6- and 18-month follow-up. Quality of life metrics were measured at day 0, day 90, and 6 weeks after ATT. RESULTS AND LIMITATIONS: Eleven patients (40% of eligible men approached) agreed to participate, of whom nine completed treatment. At day 90, the median percentage reduction was -38.2% (range -51.8% to -23.5%) for GV, -54.2% (range -74.1% to -13.8%) for TV, and -27.2% (range -61.5% to -7.5%) for TV/GV (all p < 0.0001). At 6 mo, while GV had returned to baseline (p = 0.95) both TV (-31.9%; p = 0.0007) and TV/GV (-28.7%; p = 0.0009) remained significantly reduced. This reduction was sustained at 18 months (TV -18%, TV/GV -23.8%; p = 0.01). European Organization for Research and Treatment of Cancer QoL core 30-item questionnaire scores for global, physical, role, and social functioning decreased during treatment, but all were recovering by 6 weeks. EQ-VAS scores were unchanged compared to baseline. CONCLUSIONS: TAPS01 has demonstrated feasibility and patient tolerability for short-term ATT in men on AS. Our data suggest a selective and durable antitumour effect in the short term and support a larger-scale randomised trial. PATIENT SUMMARY: We investigated the feasibility of short-term treatment with an androgen inhibitor to prevent or delay disease progression for men on active surveillance for prostate cancer. Results for a small group of patients show that 90-day treatment led to a sustained decrease in tumour volume over 18 months. The findings warrant a larger clinical trial for this approach, which could allow patients to delay or even avoid longer-term active treatments.Janssen unrestricted education gran
Radiomic and Volumetric Measurements as Clinical Trial Endpoints-A Comprehensive Review.
Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas-segmentation, validation and data sharing strategies-where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation
Recommended from our members
Multiparameter single-cell proteomic technologies give new insights into the biology of ovarian tumors.
Acknowledgements: A.D-G. thanks the Fundacion Alfonso Martin Escudero for his postdoctoral fellowship. We thank Dr. Brooke Howitt for providing ovarian tissue. Figures 1, 3, and 4 were created using BioRender.Funder: BRCA FoundationFunder: V Foundation for Cancer Research; doi: http://dx.doi.org/10.13039/100001368Funder: Stanford Cancer Institute, Innovation Award 2019Funder: Stanford Cancer Institute, Innovation Award 2021Funder: CRUK CC (crukcambridgecentre.org.uk)Funder: Fundacion Alfonso Martin EscuderoHigh-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. Its diagnosis at advanced stage compounded with its excessive genomic and cellular heterogeneity make curative treatment challenging. Two critical therapeutic challenges to overcome are carboplatin resistance and lack of response to immunotherapy. Carboplatin resistance results from diverse cell autonomous mechanisms which operate in different combinations within and across tumors. The lack of response to immunotherapy is highly likely to be related to an immunosuppressive HGSOC tumor microenvironment which overrides any clinical benefit. Results from a number of studies, mainly using transcriptomics, indicate that the immune tumor microenvironment (iTME) plays a role in carboplatin response. However, in patients receiving treatment, the exact mechanistic details are unclear. During the past decade, multiplex single-cell proteomic technologies have come to the forefront of biomedical research. Mass cytometry or cytometry by time-of-flight, measures up to 60 parameters in single cells that are in suspension. Multiplex cellular imaging technologies allow simultaneous measurement of up to 60 proteins in single cells with spatial resolution and interrogation of cell-cell interactions. This review suggests that functional interplay between cell autonomous responses to carboplatin and the HGSOC immune tumor microenvironment could be clarified through the application of multiplex single-cell proteomic technologies. We conclude that for better clinical care, multiplex single-cell proteomic technologies could be an integral component of multimodal biomarker development that also includes genomics and radiomics. Collection of matched samples from patients before and on treatment will be critical to the success of these efforts
Recommended from our members
A phase 1 trial of human telomerase reverse transcriptase (hTERT) vaccination combined with therapeutic strategies to control immune-suppressor mechanisms
The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.</jats:p
Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma.
BACKGROUND: Pathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. METHODS: Omental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). RESULTS: The performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. CONCLUSIONS: CT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application