20 research outputs found

    Comparison of Vlasov-Uehling-Uhlenbeck model with 4 π Heavy Ion Data

    Get PDF
    Streamer chamber data for collisions of Ar + KCl and Ar + BaI2 at 1.2 GeV/nucleon are compared with microscopic model predictions based on the Vlasov-Uehling-Uhlenbeck equation, for various density-dependent nuclear equations of state. Multiplicity distributions and inclusive rapidity and transverse momentum spectra are in good agreement. Rapidity spectra show evidence of being useful in determining whether the model uses the correct cross sections for binary collisions in the nuclear medium, and whether momentum-dependent interactions are correctly incorporated. Sideward flow results do not favor the same nuclear stiffness parameter at all multiplicities

    Measurement of collective flow in heavy ion collisions using particle pair correlations

    Get PDF
    We present a new type of flow analysis, based on a particle-pair correlation function, in which there is no need for an event-by-event determination of the reaction plane. Consequently, the need to correct for dispersion in an estimated reaction plane does not arise. Our method also offers the option to avoid any influence from particle misidentification. Using this method, streamer chamber data for collisions of Ar+KCl and Ar+BaI2 at 1.2 GeV/nucleon are compared with predictions of a nuclear transport model

    Collective motion in Ar+Pb collision at beam energies between 400 and 1800 MeV/nucleon

    Get PDF
    The energy dependence of rapidity distributions and flow effects was studied in central Ar+Pb collisions at 400, 800, and 1800 MeV/nucleon using a streamer chamber. Rapidity distributions for proton and pions are found to have a Gaussian shape whereas those for deuterons exhibit a two-peak structure at the two higher energies. The average in-plane transverse momentum per/nucleon and per/event shows saturation of flow around 800 MeV/nucleon for this asymmetric system. The aspect ratio of the sphericity tensor is closely correlated with the flow angle. This correlation appears to be independent of beam energy. The number of participating nucleons in central collisions varies from 213 at 400 to 135 at 1800 MeV/nucleon indicating that at the lowest energy almost the entire target nucleus participates in the collision.weitere Autoren

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore