137 research outputs found

    Effects of Plasma Radiation on the Thomson Scattering Diagnostic Installed on the Large Helical Device

    Get PDF
    Recently we modified the Thomson scattering diagnostic (TS) installed on LHD so that DC levels (VDC) of all avalanche photodiodes (APD) used for detecting scattered light can be registered every 1 ms, which enabling us to make validity check on TS data taken under very intense plasma radiation. In the line of this task, we first examined how the pulse-performance of an APD degrades as the intensity of continuous light (JDC) incident to the APD increases. We found two effects are involved in deteriorating the pulse-performance of the APD: (1) the responsivity of the APD to a pulsed light drops as JDC increases, causing a systematic errors on the deduced electron temperature (Te) and density (ne); (2) the frequency response of the APD and the following circuit drops as JDC increases, which deforms the pulse shape. The bias voltage applied to the APD (Vb) has large influence on these behaviors, showing the best overall performance for a high JDC around Vb ? 0.5Vr, where Vr is the recommended voltage giving responsivity of 675 kV/W at 1060 nm. Considering these effects together, we set a conservative validity criterion for the pulse APD performance in term of the VDC: VDC < 0.5 V. The Vb = 0.5 Vr setup gives much reliable Te-profiles without a collapse in Te-profile for a much wider range of plasma radiation intensity. With this criterion, we check the validity of Te- and ne-profiles of two example data

    Raman and Rayleigh Calibrations of the LHD YAG Thomson Scattering

    Get PDF
    We have carried out absolute calibrations of the LHD YAG Thomson scattering system by using Raman scattering and Rayleigh scattering in order to verify the applicability of Rayleigh calibration in the LHD Thomson scattering, and make a comparative study of Raman and Rayleigh calibrations. In the LHD Thomson scattering device, Rayleigh calibration is expected to give more reliable calibration factors. For the Rayleigh calibration, additional Rayleigh channel was installed into 20 polychromators. The other 124 polychromators without Rayleigh channel were calibrated by only Raman scattering. In the Raman calibration, pure gaseous nitrogen was introduced into the LHD vacuum vessel whereas the Rayleigh calibration was made by using air as target gas. The calibration factors obtained from the Raman and Rayleigh calibrations show good agreements. Uncertainties in the calibration factors obtained from the Raman and Rayleigh calibrations are discussed

    On-Demand Density Correction Using Steady-State Plasmas in the LHD Thomson Scattering

    Get PDF
    In order to measure reliable electron densities of fusion plasmas by using Thomson scattering system, both accurate absolute calibration and long-term stability in the system are required. Even if slight misalignment of some optics occurs, it may cause large errors in measured densities. We propose a new method to obtain correctionfactors to the errors originated from misalignment by using steady-state plasma discharges. In addition to the datacorrection, realignment of the laser beam can be applied als

    Vacuum ultraviolet spectroscopy in detached plasmas with impurity gas seeding in LHD

    Get PDF
    We have carried out vacuum ultraviolet (VUV) spectroscopy of impurity ions in detached plasmas with impurity gas seeding in the Large Helical Device (LHD). In neon (Ne) gas seeding experiments, temporal evolutions of VUV spectral lines from Ne IV–VIII were recorded by a grazing incidence spectrometer. In addition, spatial profiles of fully ionized Ne density were measured by charge exchange spectroscopy. An electron temperature range where each ion emits is inferred based on the comparisons of the measured line intensity ratios with the calculations using collisional-radiative models

    Nd:YAG laser Thomson scattering diagnostics for a laboratory magnetosphere

    Get PDF
    A new Nd:YAG laser Thomson scattering (TS) system has been developed to explore the mechanism of high-beta plasma formation in the RT-1 device. The TS system is designed to measure electron temperatures (Te) from 10 eV to 50 keV and electron densities (ne) of more than 1.0 × 1017 m−3. To measure at the low-density limit, the receiving optics views the long scattering length (60 mm) using a bright optical system with both a large collection window (260-mm diameter) and large collection lenses (300-mm diameter, a solid angle of ∼68 × 10−3 str). The scattered light of the 1.2-J Nd:YAG laser (repetition frequency: 10 Hz) is detected with a scattering angle of 90° and is transferred via a set of lenses and an optical fiber bundle to a polychromator. After Raman scattering measurement for the optical alignment and an absolute calibration, we successfully measured Te = 72.2 eV and ne = 0.43 × 1016 m−3 for the coil-supported case and Te = 79.2 eV and ne = 1.28 × 1016 m−3 for the coil-levitated case near the inner edge in the magnetospheric plasmas

    A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas

    Get PDF
    A new multi-tracer technique in the Tracer-Encapsulated Solid Pellet (TESPEL) method has been developed in order to acquire simultaneously the information about the behaviors of various impurities, i.e., to study concurrently the behaviors of low- and mid/high-Z impurities in magnetically confined high-temperature plasmas. In this new technique, an inorganic compound (for example, lithium titanate, Li2TiO3) is proposed to be used as a tracer embedded in the core of the TESPEL, instead of pure elements. The results of the proof-of-principle experiment clearly demonstrate the applicability of the new multi-tracer technique in the TESPEL method for the simultaneous study of behaviors of low- and mid/high-Z impurities in high-temperature plasmas

    Development of a Hierarchy-Integrated Simulation Code for Toroidal Helical Plasmas, TASK3D

    Get PDF
    The present status of the development of a hierarchy-integrated simulation code for toroidal helical plasmas, TASK3D, is reported. TASK3D is developed by extending the integrated modeling code for tokamak plasmas, Transport Analyzing System for tokamaK (TASK) [A. Fukuyama et al., Proc. of 20th IAEA Fusion Energy Conf. (Villamoura, Portugal, 2004) IAEA-CSP-25/CD/TH/P2-3]. In order to extend TASK to be applicable for threedimensional configurations, a new module for the radial electric field in general toroidal configurations has been developed and implemented. As a first test for this implementation, numerical simulations for the time evolution of temperature and electric field are conducted on the basis of an LHD experimental result, by a successful combination of a diffusive transport module and the implemented electric field module

    Calibrations of the LHD Thomson scattering system

    Get PDF
    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed

    Multi-functional Diagnostic Method with Tracer-encapsulated Pellet Injection

    Get PDF
    In order to obtain a better understanding of impurity transport in magnetically confined plasmas, a Tracer-Encapsulated Soild PELlet (TESPEL) has been developed. The essential points of the TESPEL are as follows: the TESPEL has a double-layered structure, and a tracer impurity, the amount of which can be known precisely, is embedded as an inner core. This structure enables us to deposit the tracer impurity locally inside the plasma. From experiences of developing the TESPEL production technique and its injection experiments, it became clear that various plasma properties can be studied by the TESPEL injection. There are not only impurity transport in the plasma but also transport both outside and inside of the magnetic island O-point, heat transport and high-energy neutral particle flux. Therefore, the TESPEL injection has a favorable multi-functional diagnostic capability. Furthermore a Tracer-Encapsulated Cryogenic PELlet (TECPEL) has been also developed. The TECPEL has an advantage over the TESPEL in terms of no existence of carbons in the outer layer. The TECPEL injector was installed at LHD in December 2005, and the preliminary injection experiments have been carried out
    • …
    corecore