14 research outputs found

    Mating of <i>Calopteryx cornelia</i>.

    Full text link
    <p>Individuals with a pterostigma are females. (a) Sperm translocation by the male from the opening of the internal reproductive system to the sperm vesicles under abdominal segments 2 and 3. (b) After sperm translocation, the male inserts the aedeagus under abdominal segments 2 and 3 into the female genital opening to remove rival sperm stored in the female storage organs. After removal, the male transfers sperm from the sperm vesicles to the female storage organs along a slit of the aedeagus.</p

    Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers

    Full text link
    The biological membrane is a complex two-dimensional fluid, in which various molecular interactions regulate the lateral diffusion of membrane-associated molecules. Pinning of membrane proteins or lipids by extra-membrane proteins impedes the diffusion. In addition, coupling between two monolayer leaflets within a phospholipid bilayer via interdigitation plays important roles, though this effect remains elusive. Here, we fabricate a substrate-supported model membrane with patterned bilayer/monolayer regions to explore the influences of interleaflet coupling. A patterned monolayer of polymerized diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), was lithographically generated and used to form patterned lipid bilayers and monolayers. A phospholipid monolayer was formed on top of the polymerized monolayer. The bilayer/monolayer hybrid membrane was continuous and fluid, but lateral diffusion in the monolayer region was significantly retarded, suggesting the influences of interleaflet coupling. We reconstituted photoreceptor rhodopsin (Rh) and G-protein transducin (Gt) as model transmembrane and peripheral proteins. Rh diffused laterally only in the bilayer region, whereas Gt diffused in both bilayer and monolayer regions. The patterned hybrid bilayer/monolayer membrane reproduces the retarded diffusion and confinement of membrane-bound molecules in a controlled manner and provides insight into the physicochemical and functional roles of semipermeable corrals in the cell membrane

    Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers

    Full text link
    The biological membrane is a complex two-dimensional fluid, in which various molecular interactions regulate the lateral diffusion of membrane-associated molecules. Pinning of membrane proteins or lipids by extra-membrane proteins impedes the diffusion. In addition, coupling between two monolayer leaflets within a phospholipid bilayer via interdigitation plays important roles, though this effect remains elusive. Here, we fabricate a substrate-supported model membrane with patterned bilayer/monolayer regions to explore the influences of interleaflet coupling. A patterned monolayer of polymerized diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), was lithographically generated and used to form patterned lipid bilayers and monolayers. A phospholipid monolayer was formed on top of the polymerized monolayer. The bilayer/monolayer hybrid membrane was continuous and fluid, but lateral diffusion in the monolayer region was significantly retarded, suggesting the influences of interleaflet coupling. We reconstituted photoreceptor rhodopsin (Rh) and G-protein transducin (Gt) as model transmembrane and peripheral proteins. Rh diffused laterally only in the bilayer region, whereas Gt diffused in both bilayer and monolayer regions. The patterned hybrid bilayer/monolayer membrane reproduces the retarded diffusion and confinement of membrane-bound molecules in a controlled manner and provides insight into the physicochemical and functional roles of semipermeable corrals in the cell membrane

    Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers

    Full text link
    The biological membrane is a complex two-dimensional fluid, in which various molecular interactions regulate the lateral diffusion of membrane-associated molecules. Pinning of membrane proteins or lipids by extra-membrane proteins impedes the diffusion. In addition, coupling between two monolayer leaflets within a phospholipid bilayer via interdigitation plays important roles, though this effect remains elusive. Here, we fabricate a substrate-supported model membrane with patterned bilayer/monolayer regions to explore the influences of interleaflet coupling. A patterned monolayer of polymerized diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), was lithographically generated and used to form patterned lipid bilayers and monolayers. A phospholipid monolayer was formed on top of the polymerized monolayer. The bilayer/monolayer hybrid membrane was continuous and fluid, but lateral diffusion in the monolayer region was significantly retarded, suggesting the influences of interleaflet coupling. We reconstituted photoreceptor rhodopsin (Rh) and G-protein transducin (Gt) as model transmembrane and peripheral proteins. Rh diffused laterally only in the bilayer region, whereas Gt diffused in both bilayer and monolayer regions. The patterned hybrid bilayer/monolayer membrane reproduces the retarded diffusion and confinement of membrane-bound molecules in a controlled manner and provides insight into the physicochemical and functional roles of semipermeable corrals in the cell membrane

    Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers

    Full text link
    The biological membrane is a complex two-dimensional fluid, in which various molecular interactions regulate the lateral diffusion of membrane-associated molecules. Pinning of membrane proteins or lipids by extra-membrane proteins impedes the diffusion. In addition, coupling between two monolayer leaflets within a phospholipid bilayer via interdigitation plays important roles, though this effect remains elusive. Here, we fabricate a substrate-supported model membrane with patterned bilayer/monolayer regions to explore the influences of interleaflet coupling. A patterned monolayer of polymerized diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), was lithographically generated and used to form patterned lipid bilayers and monolayers. A phospholipid monolayer was formed on top of the polymerized monolayer. The bilayer/monolayer hybrid membrane was continuous and fluid, but lateral diffusion in the monolayer region was significantly retarded, suggesting the influences of interleaflet coupling. We reconstituted photoreceptor rhodopsin (Rh) and G-protein transducin (Gt) as model transmembrane and peripheral proteins. Rh diffused laterally only in the bilayer region, whereas Gt diffused in both bilayer and monolayer regions. The patterned hybrid bilayer/monolayer membrane reproduces the retarded diffusion and confinement of membrane-bound molecules in a controlled manner and provides insight into the physicochemical and functional roles of semipermeable corrals in the cell membrane
    corecore