12 research outputs found

    Low-power display system enabled by combining oxide semiconductor and neural network technologies

    Get PDF
    An oxide semiconductor (OS)-based field effect transistor (OSFET) exhibits the advantage of having an extremely low off-state current; moreover, the OSFET displays an off-state current that is ten orders of magnitude lower than that of a CMOS-FET [1]. Recently, numerous applications that harness this feature have been reported [2]. For instance, charge leakage from a data retention node of a pixel significantly decreases when the display incorporates OSFETs in its pixel circuit (OS display) [3, 4]. This minimizes degradation in the image quality when the displayed image is static despite using lower refresh rates. Consequently, the consumed power of the display driver circuit can be reduced by a large margin. This driving method is termed idling stop (IDS) driving. The OSFET’s low-leakage can also effectively enable a type of ULSICs that we term OS-large-scale integrated circuits (OSLSI) [5, 6]. Please click Additional Files below to see the full abstract

    上皮成長因子受容体を標的とした結腸直腸腫瘍の分子イメージング : 動物モデルにおける腫瘍の検出と治療評価

    Get PDF
    To overcome the problem of overlooking colorectal tumors, a new and highly sensitive modality of colonoscopy is needed. Moreover, it is also important to establish a new modality to evaluate viable tumor volume in primary lesions of colorectal cancer (CRC) during chemotherapy. Therefore, we carried out molecular imaging of colorectal tumors targeting epidermal growth factor receptor (EGFR), which is highly expressed on tumor cells, for evaluating chemotherapeutic efficacy and for endoscopic detection of colorectal adenomas. We first attempted to image five CRC cell lines with various levels of EGFR expression using an Alexa Fluor‐labeled anti‐EGFR monoclonal antibody (AF‐EGFR‐Ab). A strong fluorescence signal was observed in the cells depending on the level of EGFR expression. When nude mice xenografted with LIM1215 CRC cells, which highly express EGFR, were i.v. injected with AF‐EGFR‐Ab, a strong fluorescence signal appeared in the tumor with a high signal to noise ratio, peaking at 48 hours after injection and then gradually decreasing, as shown using an IVIS Spectrum system. When the xenografted mice were treated with 5‐fluorouracil, fluorescence intensity in the tumor decreased in proportion to the viable tumor cell volume. Moreover, when the colorectum of azoxymethane‐treated rats was observed using a thin fluorescent endoscope with AF‐EGFR‐Ab, all 10 small colorectal adenomas (≤3 mm) were detected with a clear fluorescence signal. These preliminary results of animal experiments suggest that EGFR‐targeted fluorescent molecular imaging may be useful for quantitatively evaluating cell viability in CRC during chemotherapy, and also for detecting small adenomas using a fluorescent endoscope

    miRNA-296-5p and BOK in Pancreatic Cancer

    Get PDF
    Background/Aims: Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive invasion, early metastasis, and resistance to chemotherapy, leading to a poor prognosis. To clarify the molecular mechanism of these malignant characteristics, we performed a genome-wide microRNA (miRNA) array analysis utilizing micro-cancer tissues from patients with unresectable PDAC (stage IV), obtained by endoscopic ultrasound-fine needle aspiration (EUS-FNA). Methods: The expression profiles of 2,042 miRNAs were determined using micro-cancer tissues from 13 patients with unresectable PDAC obtained by EUS-FNA. The relationship between individual miRNA levels and overall survival (OS) was analyzed. Possible target genes for miRNAs were bioinformatically analyzed using the online database miRDB. Pancreatic cancer cell lines PANC-1, MIA PaCa-2, and PK-8 were transfected with miRNA mimic or small interfering RNA, and cell invasion, epithelial-mesenchymal transition (EMT), and apoptosis markers were examined. miRNA and mRNA expressions were examined by quantitative polymerase chain reaction. Results: Of 2,042 miRNAs, the 10 that exhibited the lowest correlation coefficient (p ≤ 0.005) between miRNA expression level and OS among the patients were identified. The miRDB and expression analysis in cancer cell lines for the 10 miRNAs identified miR-296-5p and miR-1207-5p as biomarkers predictive of shorter survival (p < 0.0005). Bioinformative target gene analysis and transfection experiments with miRNA mimics showed that Bcl2-related ovarian killer (BOK), a pro-apoptotic gene, is a target for miR296-5p in pancreatic cancer cells; transfection of miR-296-5p mimic into PANC-1, MIA PaCa-2, and PK-8 cells resulted in significant suppression of BOK mRNA and protein expression. These transfectants showed significantly higher invasion capability compared with control cells, and knock down of BOK in pancreatic cancer cells similarly enhanced invasion capability. Transfectants of miR-296-5p mimic also exhibited aberrant expression of EMT markers, including vimentin and N-cadherin. Moreover, these transfectants showed a significantly lower apoptosis rate in response to 5-fluorouracil and gemcitabine with a decrease of BOK expression, suggesting a role of miR-296-5p in drug resistance. Conclusion: These results suggest that miR-296-5p is a useful biomarker for a poor prognosis in patients with PDAC, and that the miR-296-5p/BOK signaling axis plays an important role in cell invasion, drug resistance, and EMT in PDACs

    ATR阻害は非相同末端結合および相同組換え修復と非依存的に5-FUを増感する

    Get PDF
    The anticancer agent 5-fluorouracil (5-FU) is cytotoxic and often used to treat various cancers. 5-FU is thought to inhibit the enzyme thymidylate synthase, which plays a role in nucleotide synthesis and has been found to induce single- and double-strand DNA breaks. ATR Ser/Thr kinase (ATR) is a principal kinase in the DNA damage response and is activated in response to UV- and chemotherapeutic drug-induced DNA replication stress, but its role in cellular responses to 5-FU is unclear. In this study, we examined the effect of ATR inhibition on 5-FU sensitivity of mammalian cells. Using immunoblotting, we found that 5-FU treatment dose-dependently induced the phosphorylation of ATR at the autophosphorylation site Thr-1989 and thereby activated its kinase. Administration of 5-FU with a specific ATR inhibitor remarkably decreased cell survival, compared with 5-FU treatment combined with other major DNA repair kinase inhibitors. Of note, the ATR inhibition enhanced induction of DNA double-strand breaks and apoptosis in 5-FU-treated cells. Using gene expression analysis, we found that 5-FU induced the activation of the intra-S cell-cycle checkpoint. Cells lacking BRCA2 were sensitive to 5-FU in the presence of ATR inhibitor. Moreover, ATR inhibition enhanced the efficacy of the 5-FU treatment, independently of the nonhomologous end-joining and homologous recombination repair pathways. These findings suggest that ATR could be a potential therapeutic target in 5-FU-based chemotherapy.博士(医学)・甲第791号・令和3年3月15日© 2020 Ito et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.This is an Open Access article under the CC BY license(https://creativecommons.org/licenses/by/4.0/)

    DAMP-Inducing Adjuvant and PAMP Adjuvants Parallelly Enhance Protective Type-2 and Type-1 Immune Responses to Influenza Split Vaccination

    Get PDF
    Recently, it was reported that 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD), a common pharmaceutical additive, can act as a vaccine adjuvant to enhance protective type-2 immunogenicity to co-administered seasonal influenza split vaccine by inducing host-derived damage-associated molecular patterns (DAMPs). However, like most other DAMP-inducing adjuvants such as aluminum hydroxide (Alum), HP-β-CyD may not be sufficient for the induction of protective type-1 (cellular) immune responses, thereby leaving room for improvement. Here, we demonstrate that a combination of HP-β-CyD with a humanized TLR9 agonist, K3 CpG-ODN, a potent pathogen-associated molecular pattern (PAMP), enhanced the protective efficacy of the co-administered influenza split vaccine by inducing antigen-specific type-2 and type-1 immune responses, respectively. Moreover, substantial antigen-specific IgE induction by HP-β-CyD, which can cause an allergic response to immunized antigen was completely suppressed by the addition of K3 CpG-ODN. Furthermore, HP-β-CyD- and K3 CpG-ODN-adjuvanted influenza split vaccination protected the mice against lethal challenge with high doses of heterologous influenza virus, which could not be protected against by single adjuvant vaccines. Further experiments using gene deficient mice revealed the unique immunological mechanism of action in vivo, where type-2 and type-1 immune responses enhanced by the combined adjuvants were dependent on TBK1 and TLR9, respectively, indicating their parallel signaling pathways. Finally, the analysis of immune responses in the draining lymph node suggested that HP-β-CyD promotes the uptake of K3 CpG-ODN by plasmacytoid dendritic cells and B cells, which may contributes to the activation of these cells and enhanced production of IgG2c. Taken together, the results above may offer potential clinical applications for the combination of DAMP-inducing adjuvant and PAMP adjuvant to improve vaccine immunogenicity and efficacy by enhancing both type-2 and type-1 immune responses in a parallel manner

    ウロキナーゼ型プラスミノーゲンアクチベータの阻害はマウス実験的腸炎を改善する

    Get PDF
    Although several angiogenesis-related factors are reportedly involved in the pathogenesis of ulcerative colitis (UC), the mechanisms by which they contribute to disease are unclear. We first examined the expression of angiogenesis-related factors in inflamed colorectal tissue of UC patients using antibody array, and identified the 5 factors with highest expression, which included matrix metalloproteinase-8, urokinase-type plasminogen activator (uPA), angiostatin/plasminogen, hepatocyte growth factor and endoglin. Subsequent real-time PCR experiments using additional colorectal tissues revealed that uPA mRNA levels were significantly higher in inflamed tissues than in non-inflamed tissues, and significantly correlated with the severity of UC. Mirror section immunohistochemistry revealed that uPA was expressed in the neutrophils of inflamed colorectal tissues. We administered dextran sulfate sodium (DSS) in drinking water to uPA knockout (uPA−/−) mice, and found that the disease activity index in uPA-/- mice was marginally lower and the histological score in uPA−/− mice was significantly lower than those in wild-type mice, suggesting the importance of uPA in colitis. When an uPA selective inhibitor, UK122, was administered to DSS-treated C57BL6J mice, the disease activity index and histological score in those mice were significantly lower compared with control mice. Multiple cytokine/chemokine assay using colorectal tissues from uPA−/− and UK122-treated mice revealed significantly lowered level of RANTES. In conclusion, uPA was highly expressed in neutrophils of the inflamed mucosa of UC patients, and the expression level correlated with the severity of UC. Genetic uPA deletion or pharmacological uPA blockade significantly ameliorated colitis in mice, concomitant with downregulation of RANTES

    Synthesis and biological evaluation of echinomycin analogues as potential colon cancer agent

    No full text
    Abstract Colorectal cancer is the third most commonly diagnosed cancer and the second leading cause of cancer-related death, thus a novel chemotherapeutic agent for colon cancer therapy is needed. In this study, analogues of echinomycin, a cyclic peptide natural product with potent toxicity to several human cancer cell lines, were synthesized, and their biological activities against human colon cancer cells were investigated. Analogue 3 as well as 1 inhibit HIF-1α-mediated transcription. Notably, transcriptome analysis indicated that the cell cycle and its regulation were involved in the effects on cells treated with 3. Analogue 3 exhibited superior in vivo efficacy to echinomycin without significant toxicity in mouse xenograft model. The low dose of 3 needed to be efficacious in vivo is also noteworthy and our data suggest that 3 is an attractive and potentially novel agent for the treatment of colon cancer
    corecore