18 research outputs found

    Rosiglitasone and ROCK Inhibitors Modulate Fibrogenetic Changes in TGF-β2 Treated Human Conjunctival Fibroblasts (HconF) in Different Manners

    No full text
    Purpose: The effects of Rho-associated coiled-coil containing protein kinase (ROCK) 1 and 2 inhibitor, ripasudil hydrochloride hydrate (Rip), ROCK2 inhibitor, KD025 or rosiglitazone (Rosi) on two-dimension (2D) and three-dimension (3D) cultured human conjunctival fibroblasts (HconF) treated by transforming growth factor (TGFβ2) were studied. Methods: Two-dimension and three-dimension cultured HconF were examined by transendothelial electrical resistance (TEER, 2D), size and stiffness (3D), and the expression of the extracellular matrix (ECM) including collagen1 (COL1), COL4 and COL6, fibronectin (FN), and α-smooth muscle actin (αSMA) by quantitative PCR (2D, 3D) in the presence of Rip, KD025 or Rosi. Results: TGFβ2 caused a significant increase in (1) the TEER values (2D) which were greatly reduced by Rosi, (2) the stiffness of the 3D organoids which were substantially reduced by Rip or KD025, and (3) TGFβ2 induced a significant up-regulation of all ECMs, except for COL6 (2D) or αSMA (3D), and down-regulation of COL6 (2D). Rosi caused a significant up-regulation of COL1, 4 and 6 (3D), and down-regulation of COL6 (2D) and αSMA (3D). Most of these TGFβ2-induced expressions in the 2D and αSMA in the 3D were substantially inhibited by KD025, but COL4 and αSMA in 2D were further enhanced by Rip. Conclusion: The findings reported herein indicate that TGFβ2 induces an increase in fibrogenetic changes on the plane and in the spatial space, and are inhibited by Rosi and ROCK inhibitors, respectively

    Prostaglandin F2 and EP2 Agonists Exert Different Effects on 3D 3T3-L1 Spheroids during Their Culture Phase

    No full text
    To elucidate the effects of switching a PGF2α agonist, bimatoprost acid (BIM-A), to an EP2 agonist (Omidenepag—OMD; butaprost—Buta) or reversing the switching on adipose tissue, two-dimensional (2D) and three-dimensional (3D) cultures of 3T3-L1 cells were analyzed by lipid staining and according to the mRNA expression of adipogenesis-related genes (Pparγ, Ap2, and Leptin), components of the extracellular matrix (ECM; collagen1 (Col1), Col4, Col6, and fibronectin (Fn)), and the sizes and stiffness of the 3D spheroids. Switching from BIM-A to EP2 agonists caused (1) suppression of lipid staining and downregulation of most adipogenesis-related genes, (2) smaller and stiffer 3D spheroids, and (3) upregulation of Col1 and Fn, downregulation of Col4 (2D), or up-regulation of all ECM genes (3D, BIM-A to OMD), as well as downregulation of Col6 (3D, BIM-A to Buta). In contrast, reversing the switching resulted in (1) an enhancement in lipid staining (2D) and a significant upregulation of adipogenesis-related genes (2D, 3D Buta to BIM-A), (2) larger and slightly stiffer 3D spheroids, and (3) upregulation of Col1 and Fn (2D). These collective findings indicate that the switching orders of BIM-A and EP2 agonists have a significant effect on lipid metabolism, ECM expression, and the physical stiffness of 3T3-L1 cells

    Detection of significantly high vitreous concentrations of fatty acid-binding protein 4 in patients with proliferative diabetic retinopathy

    No full text
    Abstract The fatty acid-binding protein4 (FABP4) and vascular endothelial growth factor A (VEGFA) play key roles in the metabolic and cardiovascular diseases, and proliferative diabetic retinopathy (PDR), respectively. To identify FABP4 in vitreous fluid in PDR, vitreous concentrations of FABP4 (V-FABP4) and VEGFA (V-VEGFA) from PDR (n = 20) and non-PDR (n = 20) patients were determined by Enzyme-Linked ImmunoSorbent Assays. The data, which included height and weight, systemic blood pressures, several blood biochemical parameters and blood flow at the optic nerve head (ONH) by laser speckle flowgraphy (LSFG) were collected. The levels of V-FABP4 and V-VEGFA were significantly higher in PDR patients than in non-PDR patients (P < 0.001) with a high positive correlation (r = 0.72, P < 0.001) between them. The findings were not affected by body mass index values and the presence of vitreous hemorrhaging. Among the clinical parameters, V-FABP4 correlated positively with creatinine and negatively with age and aspartate transaminase (AST) levels, while V-VEGFA correlated positively with fasting plasma glucose and hemoglobin A1c (HbA1c) levels but negatively with AST. Multiple regression analyses indicated that V-VEGFA, or V-FABP4, AST and HbA1c were independent predictors of V-FABP4 or V-VEGFA, respectively. Both were negatively correlated, but more evident in V-FABP4, with the ONH ocular blood flow

    Fatty acid-binding protein 4 is an independent factor in the pathogenesis of retinal vein occlusion.

    No full text
    The main objective of current study was to identify the fatty acid-binding protein 4 (FABP4) expressed in both adipocytes and macrophages in vitreous fluid from patients with retinal vein occlusion (RVO). Patients with RVO (n = 14, CRVO; central RVO n = 5, BRVO; branch RVO n = 9) and non-RVO (macular hole or epiretinal membrane, n = 18) were surgically treated by a 25 or 27G vitrectomy. Undiluted vitreous fluid samples obtained as the result of surgery were subjected to enzyme-linked immunosorbent assays to measure the levels of FABP4 and vascular endothelial growth factor A (VEGFA).Data including ocular blood flow by laser speckle flow graphy (LSFG), height and weight, systemic blood pressures and several blood biochemistry values were collected. Among the LSFG mean blur rate (MBR) values of the optic nerve head (ONH) at baseline, MA (MBR of all area), MV (MBR of the vascular area), and MV-MT (MBR of the tissue area) were significantly decreased in patients with CRVO. The levels of V-FABP4 and V-VEGFA were relatively or significantly (P< 0.05) higher in the BRVO or CRVO patients compared to the non-RVO patients, respectively. A positive correlation (r = 0.36, P = 0.045) or a negative correlation (r = -0.51, P = 0.006) was observed between Log V-FABP4 and Log V-VEGF, or Log V-FABP4 and MV-MT at post-operative 1-week, respectively. Furthermore, neither of these factors were affected with respect to sex, body mass index and several clinical parameters that were collected, except that a positive correlation was observed for Log V-FABP4 with blood urea nitrogen. Stepwise multivariable regression analyses indicated that MV-MT at post-operative 1week was independently associated with Log V-FABP4 after adjustment for age and gender, and gender and Log V-FABP4 were independently associated with Log V-VEGFA after adjustment for age. The findings reported herein suggest that an independent factor, FABP4 may be synergistically involved in the pathogenesis of RVO with VEGFA

    Addition of ROCK Inhibitors Alleviates Prostaglandin-Induced Inhibition of Adipogenesis in 3T3L-1 Spheroids

    No full text
    To elucidate the additive effects of the ROCK inhibitors (ROCK-i), ripasudil (Rip) and Y27632 on bimatoprost acid (BIM-A), a prostaglandin analog (PG), on adipose tissue, two- and three-dimensional (2D or 3D) cultures of 3T3-L1 cells, the most well characterized cells in the field of lipid research, were used. The cells were subjected to a variety of analyses including lipid staining, real-time cellular metabolic analysis, the mRNA expressions of genes related to adipogenesis and extracellular matrices (ECMs) as well as the sizes and physical properties of the 3D spheroids by a micro-squeezer. BIM-A induced strong inhibitory effects on most of the adipogenesis-related changes in the 2D and 3D cultured 3T3-L1 cells, including (1) the enlargement and softening of the 3D spheroids, (2) a dramatic enhancement in lipid staining and the expression of adipogenesis-related genes, and (3) a decrease in mitochondrial and glycolytic metabolic function. By adding ROCK-i to the BIM-A, most of these BIM-A-induced effects were cancelled. The collective findings reported herein suggest that ROCK-i eliminated the PG-induced suppression of adipogenesis in the 3T3-L1 cells, accompanied by the formation of enlarged 3D spheroids. Such effects of adding ROCK-i to a PG in preadipocytes on cellular properties appear to be associated with the suppression of PG-induced adverse effects, and provide additional insight into our understanding of lipid-related research

    STAT3 Is the Master Regulator for the Forming of 3D Spheroids of 3T3-L1 Preadipocytes

    No full text
    To elucidate the currently unknown mechanisms responsible for the diverse biological aspects between two-dimensional (2D) and three-dimensional (3D) cultured 3T3-L1 preadipocytes, RNA-sequencing analyses were performed. During a 7-day culture period, 2D- and 3D-cultured 3T3-L1 cells were subjected to lipid staining by BODIPY, qPCR for adipogenesis related genes, including peroxisome proliferator-activated receptor γ (Pparγ), CCAAT/enhancer-binding protein alpha (Cebpa), Ap2 (fatty acid-binding protein 4; Fabp4), leptin, and AdipoQ (adiponectin), and RNA-sequencing analysis. Differentially expressed genes (DEGs) were detected by next-generation RNA sequencing (RNA-seq) and validated by a quantitative reverse transcription–polymerase chain reaction (qRT–PCR). Bioinformatic analyses were performed on DEGs using a Gene Ontology (GO) enrichment analysis and an Ingenuity Pathway Analysis (IPA). Significant spontaneous adipogenesis was observed in 3D 3T3-L1 spheroids, but not in 2D-cultured cells. The mRNA expression of Pparγ, Cebpa, and Ap2 among the five genes tested were significantly higher in 3D spheroids than in 2D-cultured cells, thus providing support for this conclusion. RNA analysis demonstrated that a total of 826 upregulated and 725 downregulated genes were identified as DEGs. GO enrichment analysis and IPA found 50 possible upstream regulators, and among these, 6 regulators—transforming growth factor β1 (TGFβ1), signal transducer and activator of transcription 3 (STAT3), interleukin 6 (IL6), angiotensinogen (AGT), FOS, and MYC—were, in fact, significantly upregulated. Further analyses of these regulators by causal networks of the top 14 predicted diseases and functions networks (IPA network score indicated more than 30), suggesting that STAT3 was the most critical upstream regulator. The findings presented herein suggest that STAT3 has a critical role in regulating the unique biological properties of 3D spheroids that are produced from 3T3-L1 preadipocytes

    Reactivities of a Prostanoid EP2 Agonist, Omidenepag, Are Useful for Distinguishing between 3D Spheroids of Human Orbital Fibroblasts without or with Graves’ Orbitopathy

    No full text
    Background. To obtain new insights into the activation of the thyroid-stimulating hormone (TSH) and insulin-like growth factor 1 (IGF-1) receptors in human orbital fibroblasts (n-HOFs), the effects of the prostanoid EP2 agonist, omidenepag (OMD), and a rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, ripasudil (Rip) were evaluated using three-dimension (3D) n-HOFs spheroids in the absence and presence of the recombinant human TSH receptor antibodies, M22 and IGF-1. Methods. The effects of 100 nM OMD or 10 μM Rip on the physical properties, size, stiffness, and mRNA expression of several extracellular matrix (ECM) molecules, their regulator, inflammatory cytokines, and endoplasmic reticulum (ER) stress-related factors were examined and compared among 3D spheroids of n-HOFs, M22-/IGF-1-activated n-HOFs and GO-related human orbital fibroblasts (GHOFs). Results. The physical properties and mRNA expressions of several genes of the 3D n-HOFs spheroids were significantly and diversely modulated by the presence of OMD or Rip. The OMD-induced effects on M22-/IGF-1-activated n-HOFs were similar to the effects caused by GHOHs, but quite different from those of n-HOFs. Conclusions. The findings presented herein indicate that the changes induced by OMD may be useful in distinguishing between n-HOFs and GHOFs

    Benzalkonium Chloride, Even at Low Concentrations, Deteriorates Intracellular Metabolic Capacity in Human Conjunctival Fibroblasts

    No full text
    The objective of this study was to clarify the effects of benzalkonium chloride (BAC) on two-dimensional (2D) and three-dimensional (3D) cultures of human conjunctival fibroblast (HconF) cells, which are in vitro models replicating the epithelial barrier and the stromal supportive functions of the human conjunctiva. The cultured HconF cells were subjected to the following analyses in the absence and presence of 10&minus;5% or 10&minus;4% concentrations of BAC; (1) the barrier function of the 2D HconF monolayers, as determined by trans-endothelial electrical resistance (TEER) and FITC dextran permeability, (2) real-time metabolic analysis using an extracellular Seahorse flux analyzer, (3) the size and stiffness of 3D HconF spheroids, and (4) the mRNA expression of genes that encode for extracellular matrix (ECM) molecules including collagen (COL)1, 4 and 6, and fibronectin (FN), &alpha;-smooth muscle actin (&alpha;-SMA), ER stress related genes including the X-box binding protein-1 (XBP1), the spliced XBP1 (sXBP1) glucose regulator protein (GRP)78, GRP94, and the CCAAT/enhancer-binding protein homologous protein (CHOP), hypoxia inducible factor 1&alpha; (HIF1&alpha;), and Peroxisome proliferator-activated receptor gamma coactivator 1&alpha; (PGC1&alpha;). In the presence of BAC, even at low concentrations at 10&minus;5% or 10&minus;4%, the maximal respiratory capacity, mitochondrial respiratory reserve, and glycolytic reserve of HconF cells were significantly decreased, although the barrier functions of 2D HconF monolayers, the physical properties of the 3D HconF spheroids, and the mRNA expression of the corresponding genes were not affected. The findings reported herein highlight the fact that BAC, even such low concentrations, may induce unfavorable adverse effects on the cellular metabolic capacity of the human conjunctiva

    The Selective &alpha;1 Antagonist Tamsulosin Alters ECM Distributions and Cellular Metabolic Functions of ARPE 19 Cells in a Concentration-Dependent Manner

    No full text
    The purpose of the present study was to examine the effect of the selective &alpha;1 antagonist tamsulosin (TAM) on human retinal pigment epithelium cells, ARPE 19. Two-dimension (2D) and three-dimension (3D) cultured ARPE 19 cells were used in the following characterizations: (1) ultrastructure by scanning electron microscopy (SEM) (2D); (2) barrier functions by transepithelial electrical resistance (TEER) measurements, and FITC-dextran permeability (2D); (3) real time cellular metabolisms by Seahorse Bioanalyzer (2D); (4) physical properties, size and stiffness measurements (3D); and (5) expression of extracellular matrix (ECM) proteins, including collagen1 (COL1), COL4, COL6 and fibronectin (FN) by qPCR and immunohistochemistry (2D and 3D). TAM induced significant effects including: (1) alteration of the localization of the ECM deposits; (2) increase and decrease of the TEER values and FITC-dextran permeability, respectively; (3) energy shift from glycolysis into mitochondrial oxidative phosphorylation (OXPHOS); (4) large and stiffened 3D spheroids; and (5) down-regulations of the mRNA expressions and immune labeling of most ECM proteins in a concentration-dependent manner. However, in some ECM proteins, COL1 and COL6, their immunolabeling intensities were increased at the lowest concentration (1 &mu;M) of TAM. Such a discrepancy between the gene expressions and immunolabeling of ECM proteins may support alterations of ECM localizations as observed by SEM. The findings reported herein indicate that the selective &alpha;1 antagonist, TAM, significantly influenced ECM production and distribution as well as cellular metabolism levels in a concentration-dependent manner

    Brimonidine Modulates the ROCK1 Signaling Effects on Adipogenic Differentiation in 2D and 3D 3T3-L1 Cells

    No full text
    The additive effects of an α2-adrenergic agonist, brimonidine (BRI), on the pan-ROCK inhibitor (ROCK-i), ripasudil (Rip), and the ROCK2-I, KD025, on adipogenic differentiation (DIF+) were examined using two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells. The following analyses were carried out: (1) lipid staining (2D and 3D), (2) real-time measurements of cellular metabolism (2D), (3) mRNA expression of DIF+ related genes and extracellular matrix molecules (ECMs) including collagen (Col)-1, -4, and -6, and fibronectin (Fn), and (4) the sizes and physical properties of the 3D spheroids. The findings indicate that DIF+ induced (1) a substantial enhancement in lipid staining and enhanced expression of the Pparγ and Fabp4 genes, (2) significantly larger and softer 3D spheroids, and (3) down-regulation of Col1 and Fn and up-regulation of Col4 and Col6 genes. Treatment with Rip alone caused a significant enhancement in adipogenesis of both the 2D and 3D cultured 3T3-L1 cells and in the physical properties of the 3D spheroids; these effects were substantially inhibited by BRI, and the effects induced by BRI or KD025 were not insignificant. These collective findings indicate that the addition of BRI inhibited the Rip-induced enhancement of DIF+ in 3T3-L1 cells, presumably by modulating ROCK1 signaling
    corecore