35 research outputs found

    Sequentially Timed All-Optical Mapping Photography for Real- Time Monitoring of Laser Ablation: Breakdown and Filamentation in Picosecond and Femtosecond Regimes

    Get PDF
    To investigate ultrafast phenomena, a novel, ultrafast imaging technique was developed. Sequentially timed all-optical mapping photography (STAMP) performs single-shot image acquisition without the need for repetitive measurements and without sacrificing high-temporal resolution and image quality. The principle of this imaging method is based on the all-optical approach, and therefore it overcomes the temporal resolution in conventional high-speed cameras. Also, STAMP’s single-shot movie-shooting capability allows us to obtain sequential images of non-repetitive ultrafast dynamic phenomena. Here, we present the motion pictures of early stage dynamics during femtosecond laser ablation captured by two types of STAMP setup. Breakdown was induced by intense femtosecond laser pulse and monitored with a frame interval of 15.3 ps and a total of six frames. The movie clearly shows the plasma generation and expansion on glass surface. Also, filamentation was generated inside a glass and observed with a frame interval of 230 fs and total of 25 frames. These phenomena have previously only been observed by pump-probe imaging. STAMP is a powerful tool to understand precise processes of complex dynamics in ultrashort laser ablation

    Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection

    Full text link
    We present a simple protocol to purify a coherent-state superposition that has undergone a linear lossy channel. The scheme constitutes only a single beam splitter and a homodyne detector, and thus is experimentally feasible. In practice, a superposition of coherent states is transformed into a classical mixture of coherent states by linear loss, which is usually the dominant decoherence mechanism in optical systems. We also address the possibility of producing a larger amplitude superposition state from decohered states, and show that in most cases the decoherence of the states are amplified along with the amplitude.Comment: 8 pages, 10 figure

    Preface to Special Issue on Slow Light and Optical Buffer Memories

    No full text

    >

    No full text

    >

    No full text

    >

    No full text
    corecore