195 research outputs found
Epigallocatechin-3-Gallate Delivery in Lipid-Based Nanoparticles: Potentiality and Perspectives for Future Applications in Cancer Chemoprevention and Therapy
Chemoprevention is a strategy aimed to not only reduce the risk but also delay the development or recurrence of cancer. An ideal chemopreventive agent is not dangerous and ought not to result in side effects or damage to human health. In this context, epigallocatechin-3-gallate (EGCG) is considered a suitable chemopreventive agent, but its clinical use is limited by many factors, namely, the difference in source, administration, individual metabolism, absorption, and distribution. Genetic and dietary differences greatly cause this variability, which has limited the rational use of EGCG in chemoprevention and, particularly, the definition of a safe and efficient concentration. In the present mini review, the main limitations to a complete understanding of the use of EGCG as a chemopreventive agent will be briefly illustrated. This review also indicates the introduction and trialing of lipid-based nanoparticles (NPs) as a proper strategy to deliver EGCG at a well-defined concentration for better investigation of the chemopreventive activity. Finally, some examples of cancers that might benefit from EGCG treatment in different stages of the disease are proposed
Molecules Present in Plant Essential Oils for Prevention and Treatment of Colorectal Cancer (CRC)
Essential oils (EOs) are a complex mixture of hydrophobic and volatile compounds synthesized from aromatic plants, commonly present in the human diet. In recent years, many in vitro studies have suggested possible anticancer properties of single EO compounds, on colorectal cancer (CRC) cells. However, the majority of these studies did not compare the effects of these compounds on normal and cancer colon cells. By using NCM-460, a normal human mucosal epithelial cell line, Caco-2, a human colon epithelial adenocarcinoma cell line, and SW-620, colon cancer cells derived from lymph node metastatic site, we identified cinnamaldehyde, derived from cinnamon EO and eugenol, derived from bud clove EO, as compounds with a specific anticancer action selectively targeting the transformed colonic cells. Both cinnamaldehyde (75 M) and eugenol (800 M), after 72 h of treatment, were capable to induce apoptosis, necrosis and a cell cycle slowdown in Caco-2 and in SW-620, but not in NCM-460 cells. If associated with a targeted delivery to the colon, these two compounds could prove effective in the prevention or treatment of CRC
- …