381 research outputs found

    Disjoint edges in topological graphs and the tangled-thrackle conjecture

    Full text link
    It is shown that for a constant tNt\in \mathbb{N}, every simple topological graph on nn vertices has O(n)O(n) edges if it has no two sets of tt edges such that every edge in one set is disjoint from all edges of the other set (i.e., the complement of the intersection graph of the edges is Kt,tK_{t,t}-free). As an application, we settle the \emph{tangled-thrackle} conjecture formulated by Pach, Radoi\v{c}i\'c, and T\'oth: Every nn-vertex graph drawn in the plane such that every pair of edges have precisely one point in common, where this point is either a common endpoint, a crossing, or a point of tangency, has at most O(n)O(n) edges

    Thrackles: An improved upper bound

    Get PDF
    A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is 3/2(n-1), and that this bound is best possible for infinitely many values of n. © Springer International Publishing AG 2018

    Universal Geometric Graphs

    Full text link
    We introduce and study the problem of constructing geometric graphs that have few vertices and edges and that are universal for planar graphs or for some sub-class of planar graphs; a geometric graph is \emph{universal} for a class H\mathcal H of planar graphs if it contains an embedding, i.e., a crossing-free drawing, of every graph in H\mathcal H. Our main result is that there exists a geometric graph with nn vertices and O(nlogn)O(n \log n) edges that is universal for nn-vertex forests; this extends to the geometric setting a well-known graph-theoretic result by Chung and Graham, which states that there exists an nn-vertex graph with O(nlogn)O(n \log n) edges that contains every nn-vertex forest as a subgraph. Our O(nlogn)O(n \log n) bound on the number of edges cannot be improved, even if more than nn vertices are allowed. We also prove that, for every positive integer hh, every nn-vertex convex geometric graph that is universal for nn-vertex outerplanar graphs has a near-quadratic number of edges, namely Ωh(n21/h)\Omega_h(n^{2-1/h}); this almost matches the trivial O(n2)O(n^2) upper bound given by the nn-vertex complete convex geometric graph. Finally, we prove that there exists an nn-vertex convex geometric graph with nn vertices and O(nlogn)O(n \log n) edges that is universal for nn-vertex caterpillars.Comment: 20 pages, 8 figures; a 12-page extended abstracts of this paper will appear in the Proceedings of the 46th Workshop on Graph-Theoretic Concepts in Computer Science (WG 2020
    corecore