16 research outputs found

    Biofunctionalization of zinc oxide nanowires for DNA sensory applications

    Get PDF
    We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device

    N.B.: When citing this work, cite the original article. Original Publication:

    No full text
    In this study, a potentiometric intracellular glucose biosensor was fabricated by immobilization of glucose oxidase on nanoflake ZnO. Nanoflake ZnO with a wall thickness around 200 nm was grown on the tip of a borosilicate glass capillary and used as a selective intracellular glucose biosensor for the measurement of glucose concentrations in human adipocytes and frog oocytes. The results showed a fast response within 4 s and a logarithmic linear glucose-dependent electrochemical potential difference over a wide range of glucose concentration (500 nM-10 mM). Our measurements of intracellular glucose were consistent with the values of intracellular glucose concentrations reported in the literature. The monitoring capability of the sensor was demonstrated by following the increase in the intracellula
    corecore