42 research outputs found

    Imaging of Multiple Stationary Humans Using a UWB MIMO Bio-radar

    No full text
    Because of the mutual interference between multiple stationary humans, distinguishing individuals via the range profile of a single-channel bioradar is difficult. To solve this problem, we used an Ultra-WideBand Multiple-Input Multiple-Output (UWB MIMO) bioradar to compose high-resolution two-dimensional images. These images allow multiple stationary humans to be separated from space. Then, vital signs are enhanced on the basis of the UWB MIMO image sequence, thereby leading to effective suppression of interference. The experimental results demonstrate that the proposed method can compose high-resolution images of multiple stationary humans. Thus, high-performance detection and localization of multiple stationary humans can be expected

    A Novel Method for Breath Detection via Stepped-Frequency Continuous Wave Ultra-Wideband (SFCW UWB) Radars Based on Operational Bandwidth Segmentation

    No full text
    Human being detection via ultra-wideband (UWB) radars has shown great prospects in many areas, such as biomedicine, military operation, public security, emergency rescue, and so on. When a person stays stationary, the main feature that separates him/her from surroundings is the movement of chest wall due to breath. There have been many algorithms developed for breath detection while using UWB radars. However, those algorithms were almost based on a basic scheme that focused on processing in the time dimension of UWB data. They did not utilize the benefits from the wide operational bandwidth of UWB radars to show potential superiority over those narrowband systems such as a continuous wave (CW) Doppler radar. In this paper, a breath detection method was proposed based on operational bandwidth segmentation. A basic theoretical model was firstly introduced, indicating that characteristics of breath signals contained in UWB echoes were consistent among the operational frequencies, while those of clutters were not. So, the method divided a set of UWB echo data into a number of subsets, each of which corresponded to a sub-band within the operational bandwidth of the UWB radar. Thus information about the operational frequency is provided for subsequent processing. With the aid of the information, a breath enhancement algorithm was developed mainly by averaging the segmented UWB data along the operational frequency. The algorithm’s performance was verified by data measured by a stepped-frequency CW (SFCW) UWB radar. The experimental results showed that the algorithm performed better than that without the segmentation. They also showed its feasibility for fast detection of breath based on a short duration of data. Moreover, the method’s potential for target identification and impulse-radio (IR) UWB radar was investigated. In summary, the method provides a new processing scheme for UWB radars when they are used for breath detection. With this scheme, the UWB radars have a benefit of greater flexibility in data processing over those narrowband radars, and thus will perform more effectively and efficiently in practical applications

    Nitrogen/sulfur co-doping assisted chemical activation for synthesis of hierarchical porous carbon as an efficient electrode material for supercapacitors

    No full text
    The microstructure of carbon materials in terms of its specific surface area and pore structure by its activation, are the key issues which determine the electrochemical performance of supercapacitors. In this work, we developed a particular chemical activation process assisted by nitrogen/sulfur co-doping for the preparation of hierarchical porous carbon materials with high specific surface area, aiming at improving the energy density of supercapacitors. The as-obtained hierarchical porous carbon materials exhibited both high Brunauer-Emmett-Teller surface area of up to 3652 m(2) g(-1) for more ions adsorption and high porosity (2.61 cm(3) g(-1)) for rapid ion transport. Attributed to the synergistic effects of these two features, the porous carbon displays high gravimetric specific capacitance (324 F g(-1)) in KOH aqueous electrolyte with outstanding rate performance (73.3% capacitance retention at 100 A g(-1)). The symmetrical supercapacitor based on our hierarchical porous carbon displays a maximum specific energy of 9.76 Wh kg(-1) and 94.5% retention over 10000 cycles at 15 A g(-1). This synthesis strategy is facile, low-cost and industrialized, which provide a promising route to prepare the hierarchical porous carbon materials for energy storage and renewable delivery devices. (C) 2017 Elsevier Ltd. All rights reserved

    MHHT-Based Method for Analysis of Micro-Doppler Signatures for Human Finer-Grained Activity Using Through-Wall SFCW Radar

    No full text
    Ultra-wideband radar-based penetrating detection and recognition of human activities has become a focus on remote sensing in various military applications in recent years, such as urban warfare, hostage rescue, and earthquake post-disaster rescue. However, an excellent micro-Doppler signature (MDS) extracting method of human motion with high time-frequency resolution, outstanding anti-interference ability, and extensive adaptability, which aims to provide favorable and more detailed features for human activity recognition and classification, especially in the non-free space detection environment, is in great urgency. To cope with the issue, a multiple Hilbert-Huang transform (MHHT) method is proposed for high-resolution time-frequency analysis of finer-grained human activity MDS hidden in ultra-wideband (UWB) radar echoes during the through-wall detection environment. Based on the improved HHT with effective intrinsic mode function (IMF) selection according to the cosine similarity (CS) principle, the improved HHT is applied to each channel signal in the effective channel scope of the UWB radar signal and then integrated along the range direction. The activities of swinging one or two arms while standing at a spot 3 m from a wall were used to validate the abilities of the proposed method for extracting and separating the MDS of different moving body structures with a high time-frequency resolution. Simultaneously, the corresponding relationship between the frequency components in MHHT-based spectra and structures of the moving human body was demonstrated according to the radar Doppler principle combined with the principle of human body kinematics. Moreover, six common finer-grained human activities and a piaffe at different ranges under the through-wall detection environment were exploited to confirm the adaptability of the novel method for different activities and pre-eminent anti-interference ability under a low signal-noise-clutter ratio (SNCR) environment, which is critical for remote sensing in various military application, such as urban warfare, hostage rescue, earthquake post-disaster rescue

    Detection and Classification of Finer-Grained Human Activities Based on Stepped-Frequency Continuous-Wave Through-Wall Radar

    No full text
    The through-wall detection and classification of human activities are critical for anti-terrorism, security, and disaster rescue operations. An effective through-wall detection and classification technology is proposed for finer-grained human activities such as piaffe, picking up an object, waving, jumping, standing with random micro-shakes, and breathing while sitting. A stepped-frequency continuous wave (SFCW) bio-radar sensor is first used to conduct through-wall detection of finer-grained human activities; Then, a comprehensive range accumulation time-frequency transform (CRATFR) based on inverse weight coefficients is proposed, which aims to strengthen the micro-Doppler features of finer activity signals. Finally, in combination with the effective eigenvalues extracted from the CRATFR spectrum, an optimal self-adaption support vector machine (OS-SVM) based on prior human position information is introduced to classify different finer-grained activities. At a fixed position (3 m) behind a wall, the classification accuracies of six activities performed by eight individuals were 98.78% and 93.23%, respectively, for the two scenarios defined in this paper. In the position-changing experiment, an average classification accuracy of 86.67% was obtained for five finer-grained activities (excluding breathing) of eight individuals within 6 m behind the wall for the most practical scenario, a significant improvement over the 79% accuracy of the current method

    Detection of Multiple Stationary Humans Using UWB MIMO Radar

    No full text
    Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls

    Improved Detection of Human Respiration Using Data Fusion Basedon a Multistatic UWB Radar

    No full text
    This paper investigated the feasibility for improved detection of human respiration using data fusion based on a multistatic ultra-wideband (UWB) radar. UWB-radar-based respiration detection is an emerging technology that has great promise in practice. It can be applied to remotely sense the presence of a human target for through-wall surveillance, post-earthquake search and rescue, etc. In these applications, a human target’s position and posture are not known a priori. Uncertainty of the two factors results in a body orientation issue of UWB radar, namely the human target’s thorax is not always facing the radar. Thus, the radial component of the thorax motion due to respiration decreases and the respiratory motion response contained in UWB radar echoes is too weak to be detected. To cope with the issue, this paper used multisensory information provided by the multistatic UWB radar, which took the form of impulse radios and comprised one transmitting and four separated receiving antennas. An adaptive Kalman filtering algorithm was then designed to fuse the UWB echo data from all the receiving channels to detect the respiratory-motion response contained in those data. In the experiment, a volunteer’s respiration was correctly detected when he curled upon a camp bed behind a brick wall. Under the same scenario, the volunteer’s respiration was detected based on the radar’s single transmitting-receiving channels without data fusion using conventional algorithm, such as adaptive line enhancer and single-channel Kalman filtering. Moreover, performance of the data fusion algorithm was experimentally investigated with different channel combinations and antenna deployments. The experimental results show that the body orientation issue for human respiration detection via UWB radar can be dealt well with the multistatic UWB radar and the Kalman-filter-based data fusion, which can be applied to improve performance of UWB radar in real applications
    corecore