26 research outputs found

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Spatial Periodicity of Galaxy Number Counts, CMB Anisotropy, and SNIa Hubble Diagram Based on the Universe Accompanied by a Non-Minimally Coupled Scalar Field

    Full text link
    We have succeeded in establishing a cosmological model with a non-minimally coupled scalar field ϕ\phi that can account not only for the spatial periodicity or the {\it picket-fence structure} exhibited by the galaxy NN-zz relation of the 2dF survey but also for the spatial power spectrum of the cosmic microwave background radiation (CMB) temperature anisotropy observed by the WMAP satellite. The Hubble diagram of our model also compares well with the observation of Type Ia supernovae. The scalar field of our model universe starts from an extremely small value at around the nucleosynthesis epoch, remains in that state for sufficiently long periods, allowing sufficient time for the CMB temperature anisotropy to form, and then starts to grow in magnitude at the redshift zz of 1\sim 1, followed by a damping oscillation which is required to reproduce the observed picket-fence structure of the NN-zz relation. To realize such behavior of the scalar field, we have found it necessary to introduce a new form of potential V(ϕ)ϕ2exp(qϕ2)V(\phi)\propto \phi^2\exp(-q\phi^2), with qq being a constant. Through this parameter qq, we can control the epoch at which the scalar field starts growing.Comment: 19 pages, 18 figures, Accepted for publication in Astrophysics & Space Scienc

    Theory of Excitonic States in CaB6

    Full text link
    We study the excitonic states in CaB6 in terms of the Ginzburg-Landau theory. By minimizing the free energy and by comparing with experimental results, we identify two possible ground states with exciton condensation. They both break time-reversal and inversion symmetries. This leads to various magnetic and optical properties. As for magnetic properties, it is expected to be an antiferromagnet, and its spin structure is predicted. It will exhibit the magnetoelectric effect, and observed novel ferromagnetism in doped samples and in thin-film and powder samples can arise from this effect. Interesting optical phenomena such as the nonreciprocal optical effect and the second harmonic generation are predicted. Their measurement for CaB6 will clarify whether exciton condensation occurs or not and which of the two states is realized.Comment: 17 pages, 3 figure

    Coupled oscillators as models of phantom and scalar field cosmologies

    Full text link
    We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature, and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model.Comment: 18 pages, LaTeX, to appear in Physical Review

    Inflation and quintessence with nonminimal coupling

    Get PDF
    The nonminimal coupling (NMC) of the scalar field to the Ricci curvature is unavoidable in many cosmological scenarios. Inflation and quintessence models based on nonminimally coupled scalar fields are studied, with particular attention to the balance between the scalar potential and the NMC term in the action. NMC makes acceleration of the universe harder to achieve for the usual potentials, but it is beneficial in obtaining cosmic acceleration with unusual potentials. The slow-roll approximation with NMC, conformal transformation techniques, and other aspects of the physics of NMC are clarified.Comment: 36 pages, LaTeX. Typos in Eq. (2.5) correcte

    Inflation and accelerated universe based on Bose-Einstein condensation

    No full text
    A new cosmology based on the Bose-Einstein condensation is proposed. This is a unified model of Dark Energy and Dark Matter, and predicts several collapses of BEC, followed by the final acceleration which successfully describes the recent observational results. Furthermore, this model can be extended to the early inflationary regime, and explains natural initiation of the inflation, autonomous termination of the inflation, inevitable initiation of the reheating process, autonomous adjustment of the cosmological constant to zero, and acceptable generation of density fluctuations
    corecore