143 research outputs found

    Optical Imaging of Interaural Time Difference Representation in Rat Auditory Cortex

    Get PDF
    We used in vivo voltage-sensitive dye optical imaging to examine the cortical representation of interaural time difference (ITD), which is believed to be involved in sound source localization. We found that acoustic stimuli with dissimilar ITD activate various localized domains in the auditory cortex. The main loci of the activation pattern shift up to 1 mm during the first 40 ms of the response period. We suppose that some of the neurons in each pool are sensitive to the definite ITD and involved in the transduction of information about sound source localization, based on the ITD. This assumption gives a reasonable fit to the Jeffress model in which the neural network calculates the ITD to define the direction of the sound source. Such calculation forms the basis for the cortex's ability to detect the azimuth of the sound source

    Brain Activation During Autobiographical Memory Retrieval with Special Reference to Default Mode Network

    Get PDF
    Recent neuroimaging studies have suggested that brain regions activated during retrieval of autobiographical memory (ABM) overlap with the default mode network (DMN), which shows greater activation during rest than cognitively demanding tasks and is considered to be involved in self-referential processing. However, detailed overlap and segregation between ABM and DMN remain unclear. This fMRI study focuses first on revealing components of the DMN which are related to ABM and those which are unrelated to ABM, and second on extracting the neural bases which are specifically devoted to ABM. Brain activities relative to rest during three tasks matched in task difficulty assessed by reaction time were investigated by fMRI; category cued recall from ABM, category cued recall from semantic memory, and number counting task. We delineated the overlap between the regions that showed less activation during semantic memory and number counting relative to rest, which correspond to the DMN, and the areas that showed greater or less activation during ABM relative to rest. ABM-specific activation was defined as the overlap between the contrast of ABM versus rest and the contrast of ABM versus semantic memory. The fMRI results showed that greater activation as well as less activation during ABM relative to rest overlapped considerably with the DMN, indicating that the DMN is segregated to the regions which are functionally related to ABM and the regions which are unrelated to ABM. ABM-specific activation was observed in the left-lateralized brain regions and most of them fell within the DMN

    Differential Roles for Parietal and Occipital Cortices in Visual Working Memory

    Get PDF
    Visual working memory (VWM) is known as a highly capacity-limited cognitive system that can hold 3–4 items. Recent studies have demonstrated that activity in the intraparietal sulcus (IPS) and occipital cortices correlates with the number of representations held in VWM. However, differences among those regions are poorly understood, particularly when task-irrelevant items are to be ignored. The present fMRI-based study investigated whether memory load-sensitive regions such as the IPS and occipital cortices respond differently to task-relevant information. Using a change detection task in which participants are required to remember pre-specified targets, here we show that while the IPS exhibited comparable responses to both targets and distractors, the dorsal occipital cortex manifested significantly weaker responses to an array containing distractors than to an array containing only targets, despite that the number of objects presented was the same for the two arrays. These results suggest that parietal and occipital cortices engage differently in distractor processing and that the dorsal occipital, rather than parietal, activity appears to reflect output of stimulus filtering and selection based on behavioral relevance

    Asymmetric Activation of the Primary Motor Cortex during Observation of a Mirror Reflection of a Hand

    Get PDF
    Mirror therapy is an effective technique for pain relief and motor function recovery. It has been demonstrated that magnetic 20-Hz activity is induced in the primary motor cortex (M1) after median nerve stimulation and that the amount of the stimulus-induced 20-Hz activity is decreased when the M1 is activated. In the present study, we investigated how the image or the mirror reflection of a hand holding a pencil modulates the stimulus-induced 20-Hz activity in the M1. Neuromagnetic brain activity was recorded from 13 healthy right-handed subjects while they were either viewing directly their hand holding a pencil or viewing a mirror reflection of their hand holding a pencil. The 20-Hz activity in the left or the right M1 was examined after the right or the left median nerve stimulation, respectively, and the suppression of the stimulus-induced 20-Hz in the M1 by viewing directly one hand holding a pencil or by viewing the mirror image of the hand holding a pencil was assumed to indicate the activation of the M1. The results indicated that the M1 innervating the dominant hand was suppressed either by viewing directly the dominant hand holding a pencil or by viewing the mirror image of the non-dominant hand holding a pencil. On the other hand, the M1 innervating the non-dominant hand was activated by viewing the mirror image of the dominant hand holding a pencil, but was not activated by viewing directly the non-dominant hand holding a pencil. The M1 innervating either the dominant or the non-dominant hand, however, was not activated by viewing the hand on the side ipsilateral to the M1 examined or the mirror image of the hand on the side contralateral to the M1 exaimined. Such activation of the M1 might induce some therapeutic effects of mirror therapy

    Topographic representation of an occluded object and the effects of spatiotemporal context in human early visual areas.

    Get PDF
    モノの背後を見る脳の仕組みを解明 -視対象の部分像から全体像を復元する第1次視覚野の活動をfMRIで観察-. 京都大学プレスリリース. 2013-10-23.Occlusion is a primary challenge facing the visual system in perceiving object shapes in intricate natural scenes. Although behavior, neurophysiological, and modeling studies have shown that occluded portions of objects may be completed at the early stage of visual processing, we have little knowledge on how and where in the human brain the completion is realized. Here, we provide functional magnetic resonance imaging (fMRI) evidence that the occluded portion of an object is indeed represented topographically in human V1 and V2. Specifically, we find the topographic cortical responses corresponding to the invisible object rotation in V1 and V2. Furthermore, by investigating neural responses for the occluded target rotation within precisely defined cortical subregions, we could dissociate the topographic neural representation of the occluded portion from other types of neural processing such as object edge processing. We further demonstrate that the early topographic representation in V1 can be modulated by prior knowledge of a whole appearance of an object obtained before partial occlusion. These findings suggest that primary "visual" area V1 has the ability to process not only visible or virtually (illusorily) perceived objects but also "invisible" portions of objects without concurrent visual sensation such as luminance enhancement to these portions. The results also suggest that low-level image features and higher preceding cognitive context are integrated into a unified topographic representation of occluded portion in early areas

    In vivo Magnetic Resonance Microscopy and Hypothermic Anaesthesia of a Disease Model in Medaka

    Get PDF
    In medical and pharmacological research, various human disease models in small fish, such as medaka (Oryzias latipes), have been created. To investigate these disease models noninvasively, magnetic resonance imaging (MRI) is suitable because these small fish are no longer transparent as adults. However, their small body size requires a high spatial resolution, and a water pool should be avoided to maximize the strength of MRI. We developed in vivo magnetic resonance microscopy (MR microscopy) without a water pool by combining hypothermic anaesthesia and a 14.1 T MR microscope. Using in vivo MR microscopy, we noninvasively evaluated the hepatic steatosis level of a non-alcoholic fatty liver disease model in medaka and followed the individual disease progression. The steatosis level was quantified by the MRI-estimated proton density fat-fraction (MRI-PDFF), which estimates the triglyceride fat concentration in liver tissue and is recognized as an imaging biomarker. The MRI-PDFF results agreed with a histological analysis. Moreover, we optimized the hypothermic anaesthesia procedure to obtain a recovery proportion of 1 in the experiment involving MR microscopy. Recovered medaka could not be distinguished from naïve medaka after the experiment. Therefore, the in vivo MR microscopy will expand the possibilities of a human disease model in fish

    Functional relevance of the precuneus in verbal politeness.

    Get PDF
    Non-competitive and non-threatening aspects of social hierarchy, such as politeness, are universal among human cultures, and might have evolved from ritualized submission in primates; however, these behaviors have rarely been studied. Honorific language is a type of polite linguistic communication that plays an important role in human social interactions ranging from everyday conversation to international diplomacy. Here, functional magnetic resonance imaging (fMRI) revealed selective precuneus activation during a verbal politeness judgment task, but not other linguistic-judgment or social-status recognition tasks. The magnitude of the activation was correlated with the task performance. Functional suppression of the activation using cathodal transcranial direct-current stimulation reduced performance in the politeness task. These results suggest that the precuneus is an essential hub of the verbal politeness judgment

    R&D Progress of HTS Magnet Project for Ultrahigh-field MRI

    Get PDF
    Proceedings of the 28th International Symposium on Superconductivity (ISS 2015) November 16-18, 2015, Tokyo, JapanAn R&D project on high-temperature superconducting (HTS) magnets using rare-earth Ba2Cu3O7 (REBCO) wires was started in 2013. The project objective is to investigate the feasibility of adapting REBCO magnets to ultrahigh field (UHF) magnetic resonance imaging (MRI) systems. REBCO wires are promising components for UHF-MRI magnets because of their superior superconducting and mechanical properties, which make them smaller and lighter than conventional ones. Moreover, REBCO magnets can be cooled by the conduction-cooling method, making liquid helium unnecessary. In the past two years, some test coils and model magnets have been fabricated and tested. This year is the final year of the project. The goals of the project are: (1) to generate a 9.4 T magnetic field with a small test coil, (2) to generate a homogeneous magnetic field in a 200 mm diameter spherical volume with a 1.5 T model magnet, and (3) to perform imaging with the 1.5 T model magnet. In this paper, the progress of this R&D is described. The knowledge gained through these R&D results will be reflected in the design of 9.4 T MRI magnets for brain and whole body imaging
    corecore