836 research outputs found

    Evolution of ferromagnetic circular dichroism coincident with magnetization and anomalous Hall effect in Co-doped rutile TiO2

    Full text link
    Magnetic circular dichroism (MCD) of rutile Ti1-xCoxO2-d is systematically examined with various x and d to reveal a phase diagram for the appearance of ferromagnetism at higher carrier concentration and Co content. The phase diagram exactly matches with that determined from anomalous Hall effect (AHE). The magnetic field dependence of MCD also shows good coincidence with those of the magnetization and AHE. The coincidence of these independent measurements strongly suggests single and intrinsic ferromagnetic origin.Comment: 9 pages, 4 figure

    Role of charge carriers for ferromagnetism in cobalt-doped rutile TiO2

    Full text link
    Electric and magnetic properties of a high temperature ferromagnetic oxide semiconductor, cobalt-doped rutile TiO2, are summarized. The cobalt-doped rutile TiO2 epitaxial thin films with different electron densities and cobalt contents were grown on r-sapphire substrates with laser molecular beam epitaxy. Results of magnetization, magnetic circular dichroism, and anomalous Hall effect measurements were examined for samples with systematically varied electron densities and cobalt contents. The samples with high electron densities and cobalt contents show the high temperature ferromagnetism, suggesting that charge carriers induce the ferromagnetism.Comment: 14 pages, 12 figure

    Bulk and Surface Magnetization of Co atoms in Rutile Ti_[1-x]Co_xO_[2-delta] Thin Films Revealed by X-Ray Magnetic Circular Dichroism

    Full text link
    We have studied magnetism in Ti_[1-x]Co_xO_[2-\delta] thin films with various x and \delta by soft x-ray magnetic circular dichroism (XMCD) measurements at the Co L_[2,3] absorption edges. The estimated ferromagnetic moment by XMCD was 0.15-0.24 \mu\beta/Co in the surface, while in the bulk it was 0.82-2.25 \mu\beta/Co, which is in the same range as the saturation magnetization of 1.0-1.5 \mu\beta/Co. Theseresults suggest that the intrinsic origin of the erromagnetism. The smaller moment of Co atom at surface is an indication of a magnetically dead layer of a few nm thick at the surface of the thin films.Comment: This Paper is accepted in J. of Phys: Conds. Matte

    Magnetic oxide semiconductors

    Full text link
    Magnetic oxide semiconductors, oxide semiconductors doped with transition metal elements, are one of the candidates for a high Curie temperature ferromagnetic semiconductor that is important to realize semiconductor spintronics at room temperature. We review in this paper recent progress of researches on various magnetic oxide semiconductors. The magnetization, magneto-optical effect, and magneto-transport such as anomalous Hall effect are examined from viewpoint of feasibility to evaluate the ferromagnetism. The ferromagnetism of Co-doped TiO2 and transition metal-doped ZnO is discussed.Comment: 26 pages, 5 tables, 6 figure

    Mass Outflows from Dissipative Shocks in Hot Accretion Flows

    Full text link
    We consider stationary, axisymmetric hydrodynamic accretion flows in Kerr geometry. As a plausible means of efficiently separating a small population of nonthermal particles from the bulk accretion flows, we investigate the formation of standing dissipative shocks, i.e. shocks at which fraction of the energy, angular momentum and mass fluxes do not participate in the shock transition of the flow that accretes onto the compact object but are lost into collimated (jets) or uncollimated (winds) outflows. The mass loss fraction (at a shock front) is found to vary over a wide range (0 - 95%) depending on flow's angular momentum and energy. On the other hand, the associated energy loss fraction appears to be relatively low (<1%) for a flow onto a non-rotating black hole case, whereas the fraction could be an order of magnitude higher (<10%) for a flow onto a rapidly-rotating black hole. By estimating the escape velocity of the outflowing particles with a mass-accretion rate relevant for typical active galactic nuclei, we find that nearly 10% of the accreting mass could escape to form an outflow in a disk around a non-rotating black hole, while as much as 50% of the matter may contribute to outflows in a disk around a rapidly-rotating black hole. In the context of disk-jet paradigm, our model suggests that shock-driven outflows from accretion can occur in regions not too far from a central engine. Our results imply that a shock front under some conditions could serve as a plausible site where (nonthermal) seed particles of the outflows (jets/winds) are efficiently decoupled from bulk accretion.Comment: 25 pages, 10 black&white figures, Accepted to Ap

    Signature of Carrier-Induced Ferromagnetism in Ti_{1-x}Co_{x}O_{2-delta}: Exchange Interaction Between High-Spin Co 2+ and the Ti 3d Conduction Band

    Full text link
    X-ray photoemission spectroscopy measurements were performed on thin-film samples of rutile Ti_{1-x}Co_{x}O_{2-delta} to reveal the electronic structure. The Co 2p core level spectra indicate that the Co ions take the high-spin Co 2+ configuration, consistent with substitution on the Ti site. The high spin state and the shift due to the exchange splitting of the conduction band suggest strong hybridization between carriers in the Ti 3d t2g band and the t2g states of the high-spin Co 2+. These observations support the argument that room temperature ferromagnetism in Ti_{1-x}Co_{x}O_{2-delta} is intrinsic.Comment: 4 pages, 5 figures. Accepted for publication in Physical Review Letter

    Giant Planar Hall Effect in Epitaxial (Ga,Mn)As Devices

    Get PDF
    Large Hall resistance jumps are observed in microdevices patterned from epitaxial (Ga,Mn)As layers when subjected to a swept, in-plane magnetic field. This giant planar Hall effect is four orders of magnitude greater than previously observed in metallic ferromagnets. This enables extremely sensitive measurements of the angle-dependent magnetic properties of (Ga,Mn)As. The magnetic anisotropy fields deduced from these measurements are compared with theoretical predictions.Comment: 3 figure

    Spin-phonon coupling in multiferroic RCrO3_3 (R-Y, Lu, Gd, Eu, Sm): A Raman study

    Full text link
    Raman study on a select few orthochromites, RCrO3_3 (R = Y, Lu, Gd, Eu and Sm) shows that the phonon behavior at TN in compounds with magnetic R-ion (Gd and Sm) is remarkably different from that of non-magnetic R-ion (Y, Lu and Eu). While anomalies in most of the observed phonon frequencies in all these compounds may result from the distortion of CrO6_6 octahedra due to size effect and magnetostriction arising from Cr-ordering, the anomalous behavior of their linewidths observed at TN for the compounds with only magnetic R-ion suggests spin-phonon coupling. The presence of spin-phonon coupling and the anomalies in the low frequency modes related to R-ion motion in orthochromites (R = Gd and Sm) support the suggestion that the coupling between 4f-3d moments play important role in inducing switchable electric polarization.Comment: 6 pages (two column format), 7 figures; The updated version of the manuscript can be found at Euro. Phys. Lett. 101, 17008 (2013

    A ferromagnetic oxide semiconductor as spin injection electrode in magnetic tunnel junction

    Full text link
    A magnetic tunnel junctions composed of room temperature ferromagnetic semiconductor rutile Ti1-xCoxO2-d and ferromagnetic metal Fe0.1Co0.9 separated by AlOx barrier showed positive tunneling magnetoresistance (TMR) with a ratio of ~11 % at 15 K, indicating that Ti1-xCoxO2-d can be used as a spin injection electrode. The TMR decreased with increasing temperature and vanished above 180 K. TMR action at high temperature is likely prohibited by the inelastic tunneling conduction due to the low quality of the amorphous barrier layer and/or the junction interface.Comment: 9 pages, 4 figure
    • …
    corecore