161 research outputs found

    SUPERFLUIDITY AND TEMPERATURE EFFECTS (Mathematical aspects of quantum fields and related topics)

    Get PDF

    Modulation analysis for a stochastic NLS equation arising in Bose-Einstein condensation

    No full text
    International audienceWe study the asymptotic behavior of the solution of a model equation for Bose- Einstein condensation, in the case where the trapping potential varies randomly in time. The model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise fluctuations in time whose amplitude ε tends to zero. The initial condition of the solution is a standing wave solution of the unperturbed equation. We prove that up to times of the order of ε−2, the solution decomposes into the sum of a randomly modulated standing wave and a small remainder, and we derive the equations for the modulation parameters. In addition, we show that the first order of the remainder, as ε goes to zero, converges to a Gaussian process, whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite functions, on a certain time scale

    Representation formula for stochastic Schrödinger evolution equations and applications

    No full text
    International audienceWe prove a representation formula for solutions of Schrödinger equations with potentials multiplied by a temporal real-valued white noise in the Stratonovich sense. Using this formula, we obtain a dispersive estimate which allows us to study the Cauchy problem in L2 or in the energy space of model equations arising in Bose-Einstein condensation or in fiber optics. Our results also give a justification of diffusion-approximation for stochastic nonlinear Schrödinger equations

    Analytic theory of narrow lattice solitons

    Full text link
    The profiles of narrow lattice solitons are calculated analytically using perturbation analysis. A stability analysis shows that solitons centered at a lattice (potential) maximum are unstable, as they drift toward the nearest lattice minimum. This instability can, however, be so weak that the soliton is ``mathematically unstable'' but ``physically stable''. Stability of solitons centered at a lattice minimum depends on the dimension of the problem and on the nonlinearity. In the subcritical and supercritical cases, the lattice does not affect the stability, leaving the solitons stable and unstable, respectively. In contrast, in the critical case (e.g., a cubic nonlinearity in two transverse dimensions), the lattice stabilizes the (previously unstable) solitons. The stability in this case can be so weak, however, that the soliton is ``mathematically stable'' but ``physically unstable''

    A Case of Atypical Carcinoid: Harboring Variant 3a/b EML4–ALK Rearrangement

    Get PDF

    Scattering for the L2supercritical point NLS

    Get PDF
    We consider the 1D nonlinear Schrödinger equation with focusing point nonlinearity. "Point"means that the pure-power nonlinearity has an inhomogeneous potential and the potential is the delta function supported at the origin. This equation is used to model a Kerr-type medium with a narrow strip in the optic fibre. There are several mathematical studies on this equation and the local/global existence of a solution, blow-up occurrence, and blowup profile have been investigated. In this paper we focus on the asymptotic behavior of the global solution, i.e., we show that the global solution scatters as t → ±∞ in the L2 supercritical case. The main argument we use is due to Kenig-Merle, but it is required to make use of an appropriate function space (not Strichartz space) according to the smoothing properties of the associated integral equation
    corecore