65 research outputs found

    Increased Level of Pericardial Insulin-Like Growth Factor-1 in Patients With Left Ventricular Dysfunction and Advanced Heart Failure

    Get PDF
    ObjectivesTo test the hypothesis that the cardiac insulin-like growth factor-1 (IGF-1) system is up-regulated in the failing heart, we measured the pericardial (cardiac) and plasma (circulating) IGF-1 levels in coronary artery disease patients.BackgroundLocal IGF-1 systems are regulated differently from the systemic IGF-1 system. The cardiac IGF-1 system is up-regulated by the increased left ventricular (LV) wall stress. However, it remains unknown how this system is affected in LV dysfunction and heart failure.MethodsWe measured the plasma and pericardial fluid levels of IGF-1 and brain natriuretic peptide (BNP) in 87 coronary artery disease patients undergoing cardiac surgery, and examined their relationships with LV function and heart failure severity. The expressions of IGF-1 and IGF-1 receptor proteins were examined in endomyocardial biopsies obtained from other patients with normal or impaired LV function.ResultsThe pericardial IGF-1 and BNP levels were positively correlated with the plasma BNP level (both p < 0.001). The pericardial IGF-1 level was increased in heart failure patients, whereas the plasma IGF-1 level was rather decreased. The pericardial IGF-1 level was inversely correlated with the LV ejection fraction (p < 0.001), whereas the plasma IGF-1 level was not. Positive immunostaining for IGF-1 and IGF-1 receptor proteins was enhanced in myocardial biopsies from failing hearts compared with those from nonfailing hearts.ConclusionsThe pericardial IGF-1 level was increased in patients with LV dysfunction and heart failure, whereas the plasma IGF-1 level was decreased. These results may indicate that up-regulation of the cardiac IGF-1 system serves as a compensatory mechanism for LV dysfunction

    P219L DAO alters ligand binding and catalytic efficiency

    Get PDF
    Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared to wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7-0.9 μM) compared to wild-type (1.2-2.0 μM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. The present study provides new insights into the structure-function relationship of human DAO

    The Role for HNF-1β-Targeted Collectrin in Maintenance of Primary Cilia and Cell Polarity in Collecting Duct Cells

    Get PDF
    Collectrin, a homologue of angiotensin converting enzyme 2 (ACE2), is a type I transmembrane protein, and we originally reported its localization to the cytoplasm and apical membrane of collecting duct cells. Recently, two independent studies of targeted disruption of collectrin in mice resulted in severe and general defects in renal amino acid uptake. Collectrin has been reported to be under the transcriptional regulation by HNF-1α, which is exclusively expressed in proximal tubules and localized at the luminal side of brush border membranes. The deficiency of collectrin was associated with reduction of multiple amino acid transporters on luminal membranes. In the current study, we describe that collectrin is a target of HNF-1β and heavily expressed in the primary cilium of renal collecting duct cells. Collectrin is also localized in the vesicles near the peri-basal body region and binds to γ-actin-myosin II-A, SNARE, and polycystin-2-polaris complexes, and all of these are involved in intracellular and ciliary movement of vesicles and membrane proteins. Treatment of mIMCD3 cells with collectrin siRNA resulted in defective cilium formation, increased cell proliferation and apoptosis, and disappearance of polycystin-2 in the primary cilium. Suppression of collectrin mRNA in metanephric culture resulted in the formation of multiple longitudinal cysts in ureteric bud branches. Taken together, the cystic change and formation of defective cilium with the interference in the collectrin functions would suggest that it is necessary for recycling of the primary cilia-specific membrane proteins, the maintenance of the primary cilia and cell polarity of collecting duct cells. The transcriptional hierarchy between HNF-1β and PKD (polycystic kidney disease) genes expressed in the primary cilia of collecting duct cells has been suggested, and collectrin is one of such HNF-1β regulated genes

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore