232 research outputs found

    Action Evaluation Is Modulated Dominantly by Internal Sensorimotor Information and Partly by Noncausal External Cue

    Get PDF
    Previous studies demonstrated that human motor actions are not always monitored by perceptual awareness and that implicit motor control plays a key role in performing actions. In addition, appropriate evaluation of our own motor behavior is vital for human life. Here we combined a reaching task with a visual backward masking paradigm to induce an implicit motor response that is congruent or incongruent with the visual perception. We used this to investigate (i) how we evaluate such implicit motor response that could be inconsistent with perceptual awareness and (ii) the possible contributions of reaching error, external visual cues, and internal sensorimotor information to this evaluation. Participants were instructed, after each trial, to rate their own reaching performance on a 5-point scale (i.e., smooth – clumsy). They also needed to identify a color presented at a fixation point that could be changed just after the reaching start. The color was linked to the prime-mask congruency (i.e., congruent-green, incongruent-blue) in the practice phase, and then inconsistent pairs (congruent-blue or incongruent-green) were introduced in the test phase. We found early trajectory deviations induced by the invisible prime stimulus, and such implicit motor responses are significantly correlated with the action evaluation score. The results suggest the “conscious” action evaluation is properly monitoring online sensory outcomes derived by implicit motor control. Furthermore, statistical path analyses showed that internal sensorimotor information from the motor behavior modulated by the invisible prime was the predominant cue for the action evaluation, while the color-cue association learned in the practice phase in some cases biases the action evaluation in the test phase

    Odd Sensation Induced by Moving-Phantom which Triggers Subconscious Motor Program

    Get PDF
    Our motor actions are sometimes not properly performed despite our having complete understanding of the environmental situation with a suitable action intention. In most cases, insufficient skill for motor control can explain the improper performance. A notable exception is the action of stepping onto a stopped escalator, which causes clumsy movements accompanied by an odd sensation. Previous studies have examined short-term sensorimotor adaptations to treadmills and moving sleds, but the relationship between the odd sensation and behavioral properties in a real stopped-escalator situation has never been examined. Understanding this unique action-perception linkage would help us to assess the brain function connecting automatic motor controls and the conscious awareness of action. Here we directly pose a question: Does the odd sensation emerge because of the unfamiliar motor behavior itself toward the irregular step-height of a stopped escalator or as a consequence of an automatic habitual motor program cued by the escalator itself. We compared the properties of motor behavior toward a stopped escalator (SE) with those toward moving escalator and toward a wooden stairs (WS) that mimicked the stopped escalator, and analyzed the subjective feeling of the odd sensation in the SE and WS conditions. The results show that moving escalator-specific motor actions emerged after participants had stepped onto the stopped escalator despite their full awareness that it was stopped, as if the motor behavior was guided by a “phantom” of a moving escalator. Additionally, statistical analysis reveals that postural forward sway that occurred after the stepping action is directly linked with the odd sensation. The results suggest a dissociation between conscious awareness and subconscious motor control: the former makes us perfectly aware of the current environmental situation, but the latter automatically emerges as a result of highly habituated visual input no matter how unsuitable the motor control is. This dissociation appears to yield an attribution conflict, resulting in the odd sensation

    Lack of motor prediction, rather than perceptual conflict, evokes an odd sensation upon stepping onto a stopped escalator

    Get PDF
    When stepping onto a stopped escalator, we often perceive an “odd sensation” that is never felt when stepping onto stairs. The sight of an escalator provides a strong contextual cue that, in expectation of the backward acceleration when stepping on, triggers an anticipatory forward postural adjustment driven by a habitual and implicit motor process. Here we contrast two theories about why this postural change leads to an odd sensation. The first theory links the odd sensation to a lack of sensorimotor prediction from all low-level implicit motor processes. The second theory links the odd sensation to the high-level conflict between the conscious awareness that the escalator is stopped and the implicit perception that evokes an endogenous motor program specific to a moving escalator. We show very similar postural changes can also arise from reflexive responses to visual stimuli, such as contracting/expanding optic flow fields, and that these reflexive responses produce similar odd sensations to the stopped escalator. We conclude that the high-level conflict is not necessary for such sensations. In contrast, the implicitly driven behavioral change itself essentially leads to the odd sensation in motor perception since the unintentional change may be less attributable to self-generated action because of a lack of motor predictions

    Characteristics of gene expression in frozen shoulder

    Get PDF
    Background: Severe frozen shoulder (FS) is often resistant to treatment and can thus result in long-term functional impairment. However, its etiology remains unknown. We hypothesized that gene expression of FS would vary by synovial location. Methods: The synovial tissues of patients with FS were collected prospectively and analyzed for the expression of 19 genes. Synovial tissues from patients with rotator cuff tear (RCT) or shoulder instability (SI) were also analyzed as controls. A total of 10 samples were analyzed from each group. The specimens were arthroscopically taken from three different locations: rotator interval (RI), axillary recess (AX), and subacromial bursa (SAB). Total RNA was extracted from the collected tissues and was analyzed by real-time polymerase chain reaction for the following genes: matrix metalloproteinases (MMPs); tissue inhibitors of metalloproteinases (TIMPs); inflammatory cytokines (IL1B, TNF, and IL6); type I and II procollagen (COL1A1 and COL2A1); growth factors (IGF1 and TGFB1); neural factors (NGF and NGFR); SOX9; and ACTA2. Results: Site-specific analysis showed that MMP13, IL-6, SOX9, and COL1A1 were increased in all three sites. Four genes (MMP3, MMP9, COL2A1, and NGFR) were increased in the AX, MMP3 in the RI, and NGFR in the SAB were increased in the FS group than in the RCT and SI groups. In the FS group, there was a correlation between the expression of genes related to chondrogenesis (MMP2, IGF1, SOX9, COL2A1, NGF, and NGFR) or fibrosis (MMP9, TGFB1, and COL1A1). Conclusion: The expression levels of numerous MMPs, pro-inflammatory cytokines, and collagen-related genes were increased in the FS group, suggesting that catabolic and anabolic changes have simultaneously occurred. In addition, genes related to chondrogenesis or fibrosis were highly expressed in the FS group, which might have affected the range of motion limitation of the shoulder. Compared to RI and SAB, the AX was the most common site of increased expression in FS. Analyzing the lower region of the shoulder joint may lead to the elucidation of the pathogenesis of FS

    Odd Sensation Induced by Moving-Phantom which Triggers Subconscious Motor Program

    Get PDF
    Our motor actions are sometimes not properly performed despite our having complete understanding of the environmental situation with a suitable action intention. In most cases, insufficient skill for motor control can explain the improper performance. A notable exception is the action of stepping onto a stopped escalator, which causes clumsy movements accompanied by an odd sensation. Previous studies have examined short-term sensorimotor adaptations to treadmills and moving sleds, but the relationship between the odd sensation and behavioral properties in a real stopped-escalator situation has never been examined. Understanding this unique action-perception linkage would help us to assess the brain function connecting automatic motor controls and the conscious awareness of action. Here we directly pose a question: Does the odd sensation emerge because of the unfamiliar motor behavior itself toward the irregular step-height of a stopped escalator or as a consequence of an automatic habitual motor program cued by the escalator itself. We compared the properties of motor behavior toward a stopped escalator (SE) with those toward moving escalator and toward a wooden stairs (WS) that mimicked the stopped escalator, and analyzed the subjective feeling of the odd sensation in the SE and WS conditions. The results show that moving escalator-specific motor actions emerged after participants had stepped onto the stopped escalator despite their full awareness that it was stopped, as if the motor behavior was guided by a “phantom” of a moving escalator. Additionally, statistical analysis reveals that postural forward sway that occurred after the stepping action is directly linked with the odd sensation. The results suggest a dissociation between conscious awareness and subconscious motor control: the former makes us perfectly aware of the current environmental situation, but the latter automatically emerges as a result of highly habituated visual input no matter how unsuitable the motor control is. This dissociation appears to yield an attribution conflict, resulting in the odd sensation
    corecore