198 research outputs found
Numerical investigation on anti-icing performance of heating surface for NACA0012 airfoil
Ice accretion is a phenomenon that super-cooled water droplets impinge and accrete on wall surfaces. It is known that icing can cause severe accidents. To prevent the icing, an electro-thermal heater is recently adopted as the de- and anti-icing device for wings. In the present study, we conducted icing simulations of a two-dimensional NACA0012 airfoil with an electro-thermal heater on the leading-edge surface to optimize the heating area. The attack angle and the heating area were changed from 0 to 4 degrees and from 0 to 2.0% chord length, respectively. Through the simulations, we found that the lift coefficient was significantly improved by the heating, the drag coefficient generally decreased with increasing the heating area, and at the attack angle of 0 degree and the heating area of 1.0% chord length, the drag coefficient exceptionally became worse because of the residual ice shape with horns
Recommended from our members
Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions
A well-known histopathological feature of diseased skin in Buruli ulcer (BU) is coagulative necrosis caused by the Mycobacterium ulcerans macrolide exotoxin mycolactone. Since the underlying mechanism is not known, we have investigated the effect of mycolactone on endothelial cells, focussing on the expression of surface anticoagulant molecules involved in the protein C anticoagulant pathway. Congenital deficiencies in this natural anticoagulant pathway are known to induce thrombotic complications such as purpura fulimans and spontaneous necrosis. Mycolactone profoundly decreased thrombomodulin (TM) expression on the surface of human dermal microvascular endothelial cells (HDMVEC) at doses as low as 2ng/ml and as early as 8hrs after exposure. TM activates protein C by altering thrombin's substrate specificity, and exposure of HDMVEC to mycolactone for 24 hours resulted in an almost complete loss of the cells' ability to produce activated protein C. Loss of TM was shown to be due to a previously described mechanism involving mycolactone-dependent blockade of Sec61 translocation that results in proteasome-dependent degradation of newly synthesised ER-transiting proteins. Indeed, depletion from cells determined by live-cell imaging of cells stably expressing a recombinant TM-GFP fusion protein occurred at the known turnover rate. In order to determine the relevance of these findings to BU disease, immunohistochemistry of punch biopsies from 40 BU lesions (31 ulcers, nine plaques) was performed. TM abundance was profoundly reduced in the subcutis of 78% of biopsies. Furthermore, it was confirmed that fibrin deposition is a common feature of BU lesions, particularly in the necrotic areas. These findings indicate that there is decreased ability to control thrombin generation in BU skin. Mycolactone's effects on normal endothelial cell function, including its ability to activate the protein C anticoagulant pathway are strongly associated with this. Fibrin-driven tisischemia could contribute to the development of the tissue necrosis seen in BU lesions
Assembly of a dsRNA synthesizing complex: RNA-DEPENDENT RNA POLYMERASE 2 contacts the largest subunit of NUCLEAR RNA POLYMERASE IV
In plants, transcription of selfish genetic elements such as transposons and DNA viruses is suppressed by RNA-directed DNA methylation. This process is guided by 24-nt short-interfering RNAs (siRNAs) whose double-stranded precursors are synthesized by DNA-dependent NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). Pol IV and RDR2 coimmunoprecipitate, and their activities are tightly coupled, yet the basis for their association is unknown. Here, we show that an interval near the RDR2 active site contacts the Pol IV catalytic subunit, NRPD1, the largest of Pol IV's 12 subunits. Contacts between the catalytic regions of the two enzymes suggests that RDR2 is positioned to rapidly engage the free 3' ends of Pol IV transcripts and convert these single-stranded transcripts into double-stranded RNAs (dsRNAs)
Plasma protein C levels in immunocompromised septic patients are significantly lower than immunocompetent septic patients: a prospective cohort study
Introduction: Activated Protein C [APC] improves outcome in immunocompetent patients with severe sepsis particularly in those who are perceived to have high mortality risk. Before embarking on a trial of APC administration in immunocompromised septic patients, a preliminary study on plasma levels of protein C in this cohort is essential
A new panel of epitope mapped monoclonal antibodies recognising the prototypical tetraspanin CD81
Background: Tetraspanins are small transmembrane proteins, found in all higher eukaryotes, that compartmentalize cellular membranes through interactions with partner proteins. CD81 is a prototypical tetraspanin and contributes to numerous physiological and pathological processes, including acting as a critical entry receptor for hepatitis C virus (HCV). Antibody engagement of tetraspanins can induce a variety of effects, including actin cytoskeletal rearrangements, activation of MAPK-ERK signaling and cell migration. However, the epitope specificity of most anti-tetraspanin antibodies is not known, limiting mechanistic interpretation of these studies. Methods: We generated a panel of monoclonal antibodies (mAbs) specific for CD81 second extracellular domain (EC2) and performed detailed epitope mapping with a panel of CD81 mutants. All mAbs were screened for their ability to inhibit HCV infection and E2-CD81 association. Nanoscale distribution of cell surface CD81 was investigated by scanning electron microscopy. Results: The antibodies were classified in two epitope groups targeting opposing sides of EC2. We observed a wide range of anti-HCV potencies that were independent of their epitope grouping, but associated with their relative affinity for cell-surface expressed CD81. Scanning electron microscopy identified at least two populations of CD81; monodisperse and higher-order assemblies, consistent with tetraspanin-enriched microdomains. Conclusions: These novel antibodies provide well-characterised tools to investigate CD81 function, including HCV entry, and have the potential to provide insights into tetraspanin biology in general
Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica.
In neuromyelitis optica (NMO), B-cell autoimmunity to aquaporin-4 (AQP4) has been shown to be essential. However, the role of T cells remains ambiguous. Here, we first showed an increase in CD69+ activated T cells in PBMCs during NMO relapses. Next, T-cell responses to AQP4 and myelin peptides were studied in 12 NM0 patients, 10 multiple sclerosis (MS) patients and 10 healthy subjects (HS). Four hours after adding 1 of 28 overlapping AQP4 peptides, a mixture of AQP4 peptides (AQP4-M) or one of six distinct myelin peptides to 2-day cultured PBMC, CD69 expression on CD4+ T cells was examined. Data were analyzed by paired t-test, frequency of samples with 3-fold increase of CD69 on CD4+ cells (fSI3) and mean stimulation index (mSI). The T-cell response to AQP4-M was significantly increased in NMO (fSI3 = 10/12, mSI = 5.50), with AQP4 (11-30) and AQP4 (91-110) representing the two major epitopes (AQP4 (11-30), fSI3 = 11/12, mSI = 16.0 and AQP4 (91-110), fSI3 = 11/12, mSI = 13.0). Significant but less extensive responses to these two epitopes were also observed in MS and HS. Significant reactivities against AQP4 (21-40), AQP4 (61-80), AQP4 (101-120), AQP4 (171-190) and AQP4 (211-230) were exclusively found in NMO. In addition, responses to AQP4 (81-100) were higher and more frequently detected in NMO, without reaching statistical significance. Interestingly, among the six myelin peptides studied, proteolipid protein (95-116) induced a significant T-cell response in NMO (fSI3 = 7/12, mSI = 4.60). Our study suggests that cellular as well as humoral responses to AQP4 are necessary for NMO development and that the immune response to myelin protein may contribute to disease pathogenesis
- …