2,056 research outputs found

    Suppression of Magnetic Order by Pressure in BaFe2As2

    Full text link
    We performed the dc resistivity and the ZF 75As-NMR measurement of BaFe2As2 under high pressure. The T-P phase diagram of BaFe2As2 determined from resistivity anomalies and the ZF 75As-NMR clearly revealed that the SDW anomaly is quite robust against P.Comment: 2 pages, 2 figure

    Magnetic anisotropy of the spin ice compound Dy2Ti2O7

    Get PDF
    We report magnetization and ac susceptibility of single crystals of the spin ice compound Dy2Ti2O7. Saturated moments at 1.8 K along the charasteristic axes [100] and [110] agree with the expected values for an effective ferromagnetic nearest-neighbor Ising pyrochlore with local anisotropy, where each magnetic moment is constrained to obey the `ice-rule'. At high enough magnetic fields along the [111] axis, the saturated moment exhibits a beaking of the ice-rule; it agrees with the value expected for a three-in one-out spin configuration. Assuming the realistic magnetic interaction between Dy ions given by the dipolar spin ice model, we completely reproduce the results at 2 K by Monte Carlo calculations. However, down to at least 60 mK, we have not found any experimental evidence of the long-range magnetic ordering predicted by this model to occur at around 180 mK. Instead, we confirm the spin freezing of the system below 0.5 K.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    Lattice dynamics and the electron-phonon interaction in Ca2_2RuO4_4

    Full text link
    We present a Raman scattering study of Ca2_2RuO4_4, in which we investigate the temperature-dependence of the lattice dynamics and the electron-phonon interaction below the metal-insulator transition temperature ({\it T}MI_{\rm MI}). Raman spectra obtained in a backscattering geometry with light polarized in the ab-plane reveal 9 B1g_{1g} phonon modes (140, 215, 265, 269, 292, 388, 459, 534, and 683 cm1^{-1}) and 9 Ag_g phonon modes (126, 192, 204, 251, 304, 322, 356, 395, and 607 cm1^{-1}) for the orthorhombic crystal structure (Pbca-D2h15_{2h}^{15}). With increasing temperature toward {\it T}MI_{\rm MI}, the observed phonon modes shift to lower energies and exhibit reduced spectral weights, reflecting structural changes associated with the elongation of the RuO6_6 octahedra. Interestingly, the phonons exhibit significant increases in linewidths and asymmetries for {\it T} >> {\it T}N_{\rm N}. These results indicate that there is an increase in the effective number of electrons and the electron-phonon interaction strengths as the temperature is raised through {\it T}N_{\rm N}, suggesting the presence of orbital fluctuations in the temperature regime {\it T}N_{\rm N} << {\it T} << {\it T}MI_{\rm MI}.Comment: 6 pages, 4 figure

    Nuclear Magnetic Relaxation Rate in Iron-Pnictide Superconductors

    Full text link
    Nuclear magnetic relaxation rate 1/T_1 in iron-pnictide superconductors is calculated using the gap function obtained in a microscopic calculation. Based on the obtained results, we discuss the issues such as the rapid decrease of 1/T_1 just below the transition temperature and the difference between nodeless and nodal s-wave gap functions. We also investigate the effect of Coulomb interaction on 1/T_1 in the random phase approximation and show its importance in interpreting the experimental results.Comment: Proceedings of 9th International Conference on Materials and Mechanisms of Superconductivity. To be published in Physica

    Chandra observtaion of A2256 - a cluster at the early stage of merging

    Get PDF
    We present here \chandra observations of the rich cluster of galaxies A2256. In addition to the known cool subcluster, a new structure was resolved 2' east of the peak of the main cluster. Its position is roughtly at the center of a low-brightness radio halo. Spectral analysis shows that the "shoulder" has high iron abundance (\sim 1). We suggest that this structure is either another merging component or an internal structure of the main cluster. The X-ray redshifts of several regions were measured. The results agree with the optical ones and suggest that the main cluster, the subcluster and the "shoulder" are physically associated and interacting. The subcluster has low temperature (\sim 4.5 keV) and high iron abundance (\sim 0.6) in the central 150 kpc. The \chandra image shows a relatively sharp brightness gradient at the south of the subcluster peak running south-south-east (SSE). A temperature jump was found across the edge, with higher temperature ahead of the edge in the low density region. This phenomenon is qualitatively similar to the "cold fronts" found in A2142 and A3667. If the "shoulder" is ignored, the temperature map resembles those simulations at the early stage of merging while the subcluster approached the main cluster from somewhere west. This fact and the observed edge, in combination with the clear iron abundance contrast between the center of the subcluster (\sim 0.6) and the main cluster (\sim 0.2), all imply that the ongoing merger is still at the early stage. At least three member galaxies, including a radio head-tail galaxy, were found to have corresponding X-ray emission.Comment: The revised version. The shown abstract is shrunk. Accepted by ApJ. If it is possible, please try to look at the high-resolution version is http://cfa160.harvard.edu/~sunm/a2256.tar.g

    Detecting the Gravitational Redshift of Cluster Gas

    Get PDF
    We examine the gravitational redshift of radiation emitted from within the potential of a cluster. Spectral lines from the intracluster medium (ICM) are redshifted in proportion to the emission-weighted mean potential along the line of sight, amounting to approximately 50 km/s at a radius of 100 kpc/h, for a cluster dispersion of 1200 km/s. We show that the relative redshifts of different ionization states of metals in the ICM provide a unique probe of the three-dimensional matter distribution. An examination of the reported peculiar velocities of cD galaxies in well studied Abell clusters reveals they are typically redshifted by an average of +200\sim +200 km/s. This can be achieved by gravity with the addition of a steep central potential associated with the cD galaxy. Note that in general gravitational redshifts cause a small overestimate of the recessional velocities of clusters by an average of \sim 20 km/s.Comment: 6 pages, 3 figures, accepted to the Astrophysical Journal Letter
    corecore