1,019 research outputs found

    Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination

    Get PDF
    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution

    Functional phylogenetic analysis of LGI proteins identifies an interaction motif crucial for myelination

    Get PDF
    The cellular interactions that drive the formation and maintenance of the insulating myelin sheath around axons are only partially understood. Leucine-rich glioma-inactivated (LGI) proteins play important roles in nervous system development and mutations in their genes have been associated with epilepsy and amyelination. Their function involves interactions with ADAM22 and ADAM23 cell surface receptors, possibly in apposing membranes, thus attenuating cellular interactions. LGI4-ADAM22 interactions are required for axonal sorting and myelination in the developing peripheral nervous system (PNS). Functional analysis revealed that, despite their high homology and affinity for ADAM22, LGI proteins are functionally distinct. To dissect the key residues in LGI proteins required for coordinating axonal sorting and myelination in the developing PNS, we adopted a phylogenetic and computational approach and demonstrate that the mechanism of action of LGI4 depends on a cluster of three amino acids on the outer surface of the LGI4 protein, thus providing a structural basis for the mechanistic differences in LGI protein function in nervous system development and evolution

    Human cerebrospinal fluid monoclonal LGI1 autoantibodies increase neuronal excitability

    Get PDF
    OBJECTIVE: Leucine-rich glioma-inactivated 1 (LGI1) encephalitis is the second most common antibody-mediatedencephalopathy, but insight into the intrathecal B-cell autoimmune response, including clonal relationships, isotype dis-tribution, frequency, and pathogenic effects of single LGI1 antibodies, has remained limited. METHODS: We cloned, expressed, and tested antibodies from 90 antibody-secreting cells (ASCs) and B cells from thecerebrospinalfluid (CSF) of several patients with LGI1 encephalitis. RESULTS: Eighty-four percent of the ASCs and 21% of the memory B cells encoded LGI1-reactive antibodies, whereasreactivities to other brain epitopes were rare. All LGI1 antibodies were of IgG1, IgG2, or IgG4 isotype and had under-gone affinity maturation. Seven of the overall 26 LGI1 antibodies efficiently blocked the interaction of LGI1 with itsreceptor ADAM22 in vitro, and their mean LGI1 signal on mouse brain sections was weak compared to the remaining,non–ADAM22-competing antibodies. Nevertheless, both types of LGI1 antibodies increased the intrinsic cellular excit-ability and glutamatergic synaptic transmission of hippocampal CA3 neurons in slice cultures. Interpretation: Our data show that the patients’intrathecal B-cell autoimmune response is dominated by LGI1 anti-bodies and that LGI1 antibodies alone are sufficient to promote neuronal excitability, a basis of seizure generation.Fundamental differences in target specificity and antibody hypermutations compared to the CSF autoantibody reper-toire in N-methyl-D-aspartate receptor encephalitis underline the clinical concept that autoimmune encephalitides arevery distinct entities

    Silencing of IQGAP1 by shRNA inhibits the invasion of ovarian carcinoma HO-8910PM cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IQGAP1 is a scaffolding protein and overexpressed in many human tumors, including ovarian cancer. However, the contribution of IQGAP1 to invasive properties of ovarian cancer cells remains unknown. Here, we investigated the effect of IQGAP1-specific short hairpin RNA (shRNA) expressing plasmids on metastatic potential of ovarian cancer HO-8910PM cells.</p> <p>Methods</p> <p>We used RT-PCR and Western blot analysis to characterize expression of IQGAP1 in three human ovarian cancer-derived cell lines SK-OV-3, HO-8910 and HO-8910PM. We then determined whether expression of endogenous IQGAP1 correlated with invasive and migratory ability by using an in vitro Matrigel assay and cell migration assay. We further knocked down IQGAP1 using shRNA expressing plasmids controlled by U1 promoter in HO-8910PM cells and examined the proliferation activity, invasive and migration potential of IQGAP1 shRNA transfectants using MTT assay, in vitro Matrigel-coated invasion assay and migration assay.</p> <p>Results</p> <p>IQGAP1 expression level seemed to be closely associated with the enhanced invasion and migration in ovarian cancer cell lines. Levels of both IQGAP1 mRNA and protein were significantly reduced in HO-8910PM cells transfected with plasmid-based IQGAP1-specific shRNAs. RNAi-mediated knockdown of IQGAP1 expression in HO-8910PM cells resulted in a significant decrease in cell invasion and migration.</p> <p>Conclusion</p> <p>Our findings support the hypothesis that IQGAP1 promotes tumor progression and identify IQGAP1 as a potential therapeutic strategy for ovarian cancer and some other tumors with over-expression of the IQGAP1 gene.</p

    Formation of hydrogen-boron complexes in boron-doped silicon treated with a high concentration of hydrogen atoms

    Get PDF
    The formation of hydrogen (H) related complexes and their effect on boron (B) dopant were investigated in B-ion implanted and annealed silicon (Si) substrates treated with a high concentration of H. Isotope shifts by replacement of 10B with 11B were observed for some H-related Raman peaks, but not for other peaks. This shows proof of the formation of B-H complexes in which H directly bonds to B in Si. This is an experimental result concerning the formation of B-H complexes with H bonded primarily to B. Electrical resistivity measurements showed that the B acceptors are passivated via the formation of the observed B-H complexes, as well as the well-known passivation center in B-doped Si; namely, the H-B passivation center

    Transactivation of EGFR by LPS induces COX-2 expression in enterocytes

    Get PDF
    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC

    Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD

    Get PDF
    Inflammatory bowel disease (IBD) is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3) to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines

    The role of prostaglandin E2 (PGE 2) in toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously found that TLR4-deficient (TLR4-/-) mice demonstrate decreased expression of mucosal PGE <sub>2 </sub>and are protected against colitis-associated neoplasia. However, it is still unclear whether PGE <sub>2 </sub>is the central factor downstream of TLR4 signaling that promotes intestinal tumorigenesis. To further elucidate critical downstream pathways involving TLR4-mediated intestinal tumorigenesis, we examined the effects of exogenously administered PGE <sub>2 </sub>in TLR4-/- mice to see if PGE <sub>2 </sub>bypasses the protection from colitis-associated tumorigenesis.</p> <p>Method</p> <p>Mouse colitis-associated neoplasia was induced by azoxymethane (AOM) injection followed by two cycles of dextran sodium sulfate (DSS) treatment. Two different doses of PGE <sub>2 </sub>(high dose group, 200 μg, n = 8; and low dose group, 100 μg, n = 6) were administered daily during recovery period of colitis by gavage feeding. Another group was given PGE <sub>2 </sub>during DSS treatment (200 μg, n = 5). Inflammation and dysplasia were assessed histologically. Mucosal Cox-2 and amphiregulin (AR) expression, prostanoid synthesis, and EGFR activation were analyzed.</p> <p>Results</p> <p>In control mice treated with PBS, the average number of tumors was greater in WT mice (n = 13) than in TLR4-/- mice (n = 7). High dose but not low dose PGE <sub>2 </sub>treatment caused an increase in epithelial proliferation. 28.6% of PBS-treated TLR4-/- mice developed dysplasia (tumors/animal: 0.4 ± 0.2). By contrast, 75.0% (tumors/animal: 1.5 ± 1.2, P < 0.05) of the high dose group and 33.3% (tumors/animal: 0.3 ± 0.5) of the low dose group developed dysplasia in TLR4-/- mice. Tumor size was also increased by high dose PGE <sub>2 </sub>treatment. Endogenous prostanoid synthesis was differentially affected by PGE <sub>2 </sub>treatment during acute and recovery phases of colitis. Exogenous administration of PGE <sub>2 </sub>increased colitis-associated tumorigenesis but this only occurred during the recovery phase. Lastly, PGE <sub>2 </sub>treatment increased mucosal expression of AR and Cox-2, thus inducing EGFR activation and forming a positive feedback mechanism to amplify mucosal Cox-2.</p> <p>Conclusions</p> <p>These results highlight the importance of PGE <sub>2 </sub>as a central downstream molecule involving TLR4-mediated intestinal tumorigenesis.</p

    Significance of Toll-like Receptors Expression in Tumor Growth and Spreading: A Short Review

    Get PDF
    Toll-like receptors (TLRs) are considered now as crucial sensors of innate immunity. Their role in the recognition of pathogens and the initiation of adaptive immune responses against them is well known. However, in last years TLRs have been identified on several tumor cells, including human malignancies. Their expression in cancer was found to be twofold: either promoting or inhibiting tumor progression. It was also demonstrated that several TLRs agonists, either natural or synthetic ones, may have beneficial effect on tumor-mediated disease, leading to potentiation of immune response to tumor-associated antigens. TLR-agonist linked tumor immunotherapy is still in nascent state, but growing rapidly, also in the area of common human malignancies. To date, the most promising and the most frequently studied interaction in tumor immunotherapy trials seems to be TLR9 and its synthetic agonists
    corecore