1,371 research outputs found
Probing gluon polarization with pi0's in longitudinally polarized proton collisions at the RHIC-PHENIX experiment
This report presents double helicity asymmetry in inclusive
production in polarized proton-proton collisions at a center-of-mass energy
() of 200 GeV. The data were collected with the PHENIX detector at
the Relativistic Heavy Ion Collider (RHIC) during the 2004 run. The data are
compared to a next-to-leading order perturbative quantum chromodynamic (NLO
pQCD) calculation.Comment: 4pp. To appear in the proceedings of 16th International Spin Physics
Symposium (SPIN 2004), Trieste, Italy, 10-16 Oct 200
The overview of the spin physics at RHIC-PHENIX experiment
In Spiring 2005, RHIC successfully completed its first long data collection run with polarized proton beams. PHENIX accumulated ten fold larger statistics with higher polarization than the previous spin physics run in 2003. This contribution will introduce the RHIC-PHENIX experiment and present our recent results
Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)
As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed
Typhoon 9707 observations with the MU radar and L-band boundary layer radar
International audienceTyphoon 9707 (Opal) was observed with the VHF-band Middle and Upper atmosphere (MU) radar, an L-band boundary layer radar (BLR), and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1?3 km to 2?10 km with increasing distance (within 80?260 km range) from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1?2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ?bright band' around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde soundings. In the convective precipitating clouds, the regions of strong and weak reflectivities were well associated with those of updraft and downdraft, respectively
Combined wind profiler-weather radar observations of orographic rainband around Kyushu, Japan in the Baiu season
International audienceA special observation campaign (X-BAIU), using various instruments (wind profilers, C-band weather radars, X-band Doppler radars, rawinsondes, etc.), was carried out in Kyushu (western Japan) during the Baiu season, from 1998 to 2002. In the X-BAIU-99 and -02 observations, a line-shaped orographic rainband extending northeastward from the Koshikijima Islands appeared in the low-level strong wind with warm-moist airs. The weather radar observation indicated that the rainband was maintained for 11h. The maximum length and width of the rainband observed in 1999 was ~200km and ~20km, respectively. The rainband observed in 2002 was not so developed compared with the case in 1999. The Froude number averaged from sea level to the top of the Koshikijima Islands (~600m) was large (>1), and the lifting condensation level was below the tops of the Koshikijima Islands. Thus, it is suggested that the clouds organizing the rainband are formed by the triggering of the mountains on the airflow passing over them. The vertical profile of horizontal wind in/around the rainband was investigated in the wind profiler observations. In the downdraft region 60km from the Koshikijima Islands, strong wind and its clockwise rotation with increasing height was observed below 3km altitude. In addition, a strong wind component perpendicular to the rainband was observed when the rainband was well developed. These wind behaviors were related to the evolution of the rainband
Transition region of TEC enhancement phenomena during geomagnetically disturbed periods at mid-latitudes
Large-scale TEC perturbations/enhancements observed during the day sectors of major storm periods, 12-13&nbsp;February 2000, 23&nbsp;September 1999, 29&nbsp;October 2003, and 21&nbsp;November 2003, were studied using a high resolution GPS network over Japan. TEC enhancements described in the present study have large magnitudes (&ge;25&times;10<sup>16</sup> electrons/m<sup>2</sup>) compared to the quiet-time values and long periods (&ge;120 min). The sequential manner of development and the propagation of these perturbations show that they are initiated at the northern region and propagate towards the southern region of Japan, with velocities &gt;350 m/s. On 12&nbsp;February 2000, remarkably high values of TEC and background content are observed at the southern region, compared to the north, because of the poleward expansion of the equatorial anomaly crest, which is characterized by strong latitudinal gradients near 35&deg; N (26&deg; N geomagnetically). When the TEC enhancements, initiating at the north, propagate through the region 39-34&deg; N (30-25&deg; N geomagnetically), they undergo transitions characterized by a severe decrease in amplitude of TEC enhancements. This may be due to their interaction with the higher background content of the expanded anomaly crest. However, at the low-latitude region, below 34&deg; N, an increase in TEC is manifested as an enhanced ionization pattern (EIP). This could be due to the prompt penetration of the eastward electric field, which is evident from high values of the southward Interplanetary Magnetic Field component (IMF <i>B<sub>z</sub></i>) and AE index. The TEC perturbations observed on the other storm days also exhibit similar transitions, characterized by a decreasing magnitude of the perturbation component, at the region around 39-34&deg; N. In addition to this, on the other storm days, at the low-latitude region, below 34&deg; N, an increase in TEC (EIP feature) also indicates the repeatability of the above scenario. It is found that, the latitude and time at which the decrease in magnitude of the perturbation component/amplitude of the TEC enhancement are matching with the latitude and time of the appearance of the high background content. In the present study, on 12&nbsp;February 2000, the F-layer height increases at Wakkanai and Kokubunji, by exhibiting a typical dispersion feature of LSTID, or passage of an equatorward surge, which is matching with the time of occurrence of the propagating TEC perturbation component. Similarly, on 29&nbsp;October 2003, the increase in F-layer heights by more than 150km at Wakkanai and 90 km at Kokubunji around 18:00&nbsp;JST, indicates the role of the equatorward neutral wind. On that day, TEC perturbation observed at the northern region, after 18:30&nbsp;JST, which propagates towards south, could be caused mainly by the equatorward neutral wind, leading to an F-layer height increase. These observations imply the role of the equatorward neutral wind, which increases the F-layer height, by lifting the ionization to the regions of lower loss during daytime, when production is still taking place, which, in turn, increases the TEC values. <P style="line-height: 20px;"> Large-scale traveling ionospheric disturbances (LSTIDs) are considered as ionospheric manifestations of the passage of Atmospheric Gravity Waves (AGWs) that are generated at the high latitude by energy input from the magnetosphere to the low-latitude ionosphere. This study shows that large-scale TEC perturbations observed here are produced at the northern region due to the combined effects of the equatorward neutral wind, the subsequent F-layer height increase, and LSTIDs. When these perturbation components propagate through the region, 39-34&deg; N, they undergo transitions characterised by a decrease in magnitude. Also, at the low-latitude region, below 34&deg; N, an increase in the TEC exhibits EIP feature, due to the prompt penetration of the eastward electric field
Relationship between propagation direction of gravity waves in OH and OI airglow images and VHF radar echo occurrence during the SEEK-2 campaign
We report simultaneous observations of atmospheric gravity waves (AGW) in OI (557.7nm) and OH airglow images and VHF radar backscatter from field-aligned irregularities (FAI) in the <i>E</i>-region during the SEEK-2 (Sporadic-<i>E</i> Experiment over Kyushu 2) campaign period from 29 July to 9 August 2002. An all-sky imager was operated at Nishino-Omote (30.5 N, 130.1 E), Japan. On 14 nights, 17 AGW events were detected in OI and OH airglow images. AGW propagated mostly toward the northeast or southeast. From comparison with the <i>E</i>-region FAI occurrence, which is detected by a nearby VHF radar (31.57MHz), we found that AGW tended to propagate southeastward during FAI events. This result suggests that the interaction between AGW and <i>E</i>-region plasma plays an important role in generating FAI. Furthermore, polarization electric fields generated directly by AGW may contribute to the FAI generation.<br><br> <b>Keywords.</b> Atmospheric composition and structure (Airglow and aurora), Ionosphere (Ionospheric irregularities, Mid-latitude ionosphere
On the vertical extent of the large low shear velocity province beneath the South Pacific Superswell
International audienceThe three-dimensional S-wave velocity structure beneath the South Pacific Superswell is obtained from joint broadband seismic experiments on the ocean floor and islands. We collected only approximately 800 relative times of long-period teleseismic SH-waves by using a waveform cross-correlation from 76 events occurring from January 2003 to May 2005. We conducted relative time tomography to obtain a 3D structure to depths of 1600 km. In the resultant image, we find a characteristic distribution of low- velocity regions. The most prominent features are a large doughnut-shaped low-velocity region at 800 km depth, and an elongated large low-velocity region beneath the Society to Pitcairn hotspots at 1200 km depth. Our model suggests that a large low shear velocity province rooted in the D00 extends upwards and culminates near the top of the lower mantle beneath the central part of the South Pacific Superswell although its perfect continuity is not still confirmed
- …