40 research outputs found

    Effects of long-term moderate exercise and increase in number of daily steps on serum lipids in women: randomised controlled trial [ISRCTN21921919]

    Get PDF
    BACKGROUND: This study was designed to evaluate the effects of a 24-month period of moderate exercise on serum lipids in menopausal women. METHODS: The subjects (40–60 y) were randomly divided into an exercise group (n = 14) and a control group (n = 13). The women in the exercise group were asked to participate in a 90-minute physical education class once a week and to record their daily steps as measured by a pedometer for 24 months. RESULTS: Mean of daily steps was significantly higher in the exercise group from about 6,800 to over 8,500 steps (P < 0.01). In the control group, the number of daily steps ranged from 5,700 to 6,800 steps throughout the follow-up period. A significant interaction between the exercise group and the control group in the changes og total cholesterol (TC), high-density lipoprotein cholesterol (HDLC) and TC : HDLC ratio could be observed (P < 0.05). By multiple regression analysis, the number of daily steps was related to HDLC and TC : HDLC levels after 24 months, and the changes in TC and HDLC concentrations. CONCLUSIONS: These results suggest that daily exercise as well as increasing the number of daily steps can improve the profile of serum lipids

    Chromosome Studies in Mouse Neuroblastoma Cells

    Get PDF
    Chromosome studies were carried out in cultured cells from a mouse neuroblastoma. C1300 tissue and in three clones established from this tumor. They possessed characteristic karyotypes with remarkable markers. Double minutes (DMs) were demonstrated in all cell lines, in addition to some other chromosomes aberrations, such as microchromosomes and chromosome pulverization

    Development of a Highly Sensitive Cytotoxicity Assay System for CYP3A4-Mediated Metabolic Activation

    No full text
    ABSTRACT: Drug-induced hepatotoxicity, which is a rare but serious adverse reaction to a large number of pharmaceutical drugs, is sometimes associated with reactive metabolites produced by drug-metabolizing enzymes. In the present study, we constructed a cell-based system to evaluate the cytotoxicity of reactive metabolites produced by CYP3A4 using human hepatoma cells infected with an adenovirus vector expressing human CYP3A4 (AdCYP3A4). When seven hepatoma cell lines (HepG2, Hep3B, HLE, HLF, Huh6, Huh7, and Fa2N4 cells) were infected with AdCYP3A4, HepG2 cells showed the highest CYP3A4 protein expression and testosterone 6␤-hydroxylase activity (670 pmol ⅐ min ؊1 ⅐ mg ؊1 ). With the use of AdCYP3A4-infected HepG2 cells, the cytotoxicities of 23 drugs were evaluated by the 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt assay, and the cell viability when treated with 11 drugs (amiodarone, desipramine, felbamate, isoniazid, labetalol, leflunomide, nefazodone, nitrofurantoin, tacrine, terbinafine, and tolcapone) was significantly decreased. Moreover, the transfection of siRNA for nuclear factor erythroid 2-related factor 2 (Nrf2) to decrease the cellular expression level of Nrf2 exacerbated the cytotoxicity of some drugs (troglitazone, flutamide, acetaminophen, clozapine, terbinafine, and desipramine), suggesting that the genes regulated by Nrf2 are associated with the detoxification of the cytotoxicities mediated by CYP3A4. We constructed a highly sensitive cell-based system to detect the drug-induced cytotoxicity mediated by CYP3A4. This system would be beneficial in preclinical screening in drug development and increase our understanding of the druginduced cytotoxicity associated with CYP3A4
    corecore