784 research outputs found
Cluster dynamical mean-field study of the Hubbard model on a 3D frustrated hyperkagome lattice
We study the Hubbard model on a geometrically-frustrated hyperkagome lattice
by a cluster extension of the dynamical mean field theory. We calculate the
temperature () dependences of the specific heat () and the spin-lattice
relaxation time () in correlated metallic region. shows a peak at
and rapidly decreases as . On the other hand, has a
peak at a higher temperature than , and largely decreases
below , followed by the Korringa law as . Both
peak temperatures are suppressed and the peaks become sharper as electron
correlation is increased. These behaviors originate from strong renormalization
of the energy scales in the peculiar electronic structure in this frustrated
system; a pseudo-gap like feature, the van-Hove singularity, and the flat band.
The results are discussed in comparison with the experimental data in the
hyperkagome material, NaIrO.Comment: 4 pages, 4 figures, Conference proceedings for Highly Frustrated
Magnetism 200
Compensation of Effective Field in the Field-Induced Superconductor k-(BETS)2FeBr4 Observed by 77Se NMR
We report results of 77Se NMR frequency shift in the normal state of the
organic charge-transfer-salt k-(BETS)2FeBr4 which shows magnetic field-induced
superconductivity (FISC). From a simple mean field analysis, we determined the
field and the temperature dependences of the magnetization m_{pi} of the \pi
conduction electrons on BETS molecules. We found that the Fe spins are
antiferromagnetically coupled to the pi electrons and determined the exchange
field to be J = -2.3T/mu_B. The exchange field from the fully saturated Fe
moments (5 mu_B) is compensated by an external field of 12T. This is close to
the central field of the FISC phase, consistent with the Jaccarino-Peter local
field-compensation mechanism for FISC (Phys. Rev. Lett. 9, 290 (1962))
Temperature-driven transition from the Wigner Crystal to the Bond-Charge-Density Wave in the Quasi-One-Dimensional Quarter-Filled band
It is known that within the interacting electron model Hamiltonian for the
one-dimensional 1/4-filled band, the singlet ground state is a Wigner crystal
only if the nearest neighbor electron-electron repulsion is larger than a
critical value. We show that this critical nearest neighbor Coulomb interaction
is different for each spin subspace, with the critical value decreasing with
increasing spin. As a consequence, with the lowering of temperature, there can
occur a transition from a Wigner crystal charge-ordered state to a spin-Peierls
state that is a Bond-Charge-Density Wave with charge occupancies different from
the Wigner crystal. This transition is possible because spin excitations from
the spin-Peierls state in the 1/4-filled band are necessarily accompanied by
changes in site charge densities. We apply our theory to the 1/4-filled band
quasi-one-dimensional organic charge-transfer solids in general and to 2:1
tetramethyltetrathiafulvalene (TMTTF) and tetramethyltetraselenafulvalene
(TMTSF) cationic salts in particular. We believe that many recent experiments
strongly indicate the Wigner crystal to Bond-Charge-Density Wave transition in
several members of the TMTTF family. We explain the occurrence of two different
antiferromagnetic phases but a single spin-Peierls state in the generic phase
diagram for the 2:1 cationic solids. The antiferromagnetic phases can have
either the Wigner crystal or the Bond-Charge-Spin-Density Wave charge
occupancies. The spin-Peierls state is always a Bond-Charge-Density Wave.Comment: 12 pages, 8 EPS figures. Longer version of previous manuscript.
Contains new numerical data as well as greatly expanded discussio
Superconductivity in Pr2Ba4Cu7O15-delta with metallic double chains
We report superconductivity with =10K in
PrBaCuO compound possessing metallic double
chains. A reduction treatment on as-sintered samples causes not only the
enhanced metallic conduction but also the appearance of superconductivity
accompanied by the c-axis elongation due to oxygen deficiency
Nuclear spin-spin coupling in La_{2-x}Sr_{x}CuO_{4} studied by stimulated echo decay
We have performed copper NQR experiments in high temperature superconductors
YBa_{2}Cu_{4}O_{8}, YBa_{2}Cu_{3}O_{7}, and La_{2-x}Sr_{x}CuO_{4} (x=0.12 and
0.15), using the stimulated echo technique. The stimulated echo intensity is
analyzed by a model that includes the spin-lattice relaxation process (T_ {1
}-process) and the fluctuating local field due to nuclear spin-spin coupling.
The model gives quantitative account of the experimental results in Y-based
compounds using the known values of 1/T_{1} and 1/T_{2G}, the gaussian decay
rate of the spin echo intensity. The same model applied to LSCO enables us to
extract the value of T_{2G}. Our results indicate that T_{1}T/T_{2G} is
independent of temperature, implying that the dynamic exponent is one in
La_{2-x}Sr_{x}CuO_{4}.Comment: 14 pages, 11 fugures, The bibliography field is correcte
Effects of acute intermittent hypoxia on corticospinal excitability within the primary motor cortex
Purpose
Acute intermittent hypoxia (AIH) is a safe and non-invasive treatment approach that uses brief, repetitive periods of breathing reduced oxygen air alternated with normoxia. While AIH is known to affect spinal circuit excitability, the effects of AIH on cortical excitability remain largely unknown. We investigated the effects of AIH on cortical excitability within the primary motor cortex.
Methods
Eleven healthy, right-handed participants completed two testing sessions: (1) AIH (comprising 3 min in hypoxia [fraction of inspired oxygen ~ 10%] and 2 min in normoxia repeated over five cycles) and (2) normoxia (NOR) (equivalent duration to AIH). Single- and paired-pulse transcranial magnetic stimulations were delivered to the primary motor cortex, before and 0, 25, and 50 min after AIH and normoxia.
Results
The mean nadir in arterial oxygen saturation was lower (p 0.05). There was no association between arterial oxygen saturation and changes in corticospinal excitability after AIH (r = 0.05, p = 0.87).
Conclusion
Overall, AIH did not modify either corticospinal excitability or excitability of intracortical facilitatory and inhibitory circuits within the primary motor cortex. Future research should explore whether a more severe or individualised AIH dose would induce consistent, measurable changes in corticospinal excitability
- …