784 research outputs found

    Cluster dynamical mean-field study of the Hubbard model on a 3D frustrated hyperkagome lattice

    Full text link
    We study the Hubbard model on a geometrically-frustrated hyperkagome lattice by a cluster extension of the dynamical mean field theory. We calculate the temperature (TT) dependences of the specific heat (CC) and the spin-lattice relaxation time (T1T_1) in correlated metallic region. C/TC/T shows a peak at T=Tp1T=T_{p1} and rapidly decreases as T>0T->0. On the other hand, 1/T1T1/T_1T has a peak at a higher temperature Tp2T_{p2} than Tp1T_{p1}, and largely decreases below Tp2T_{p2}, followed by the Korringa law 1/T1proptoT1/T_1 propto T as T>0T->0. Both peak temperatures are suppressed and the peaks become sharper as electron correlation is increased. These behaviors originate from strong renormalization of the energy scales in the peculiar electronic structure in this frustrated system; a pseudo-gap like feature, the van-Hove singularity, and the flat band. The results are discussed in comparison with the experimental data in the hyperkagome material, Na4_4Ir3_3O8_8.Comment: 4 pages, 4 figures, Conference proceedings for Highly Frustrated Magnetism 200

    Compensation of Effective Field in the Field-Induced Superconductor k-(BETS)2FeBr4 Observed by 77Se NMR

    Full text link
    We report results of 77Se NMR frequency shift in the normal state of the organic charge-transfer-salt k-(BETS)2FeBr4 which shows magnetic field-induced superconductivity (FISC). From a simple mean field analysis, we determined the field and the temperature dependences of the magnetization m_{pi} of the \pi conduction electrons on BETS molecules. We found that the Fe spins are antiferromagnetically coupled to the pi electrons and determined the exchange field to be J = -2.3T/mu_B. The exchange field from the fully saturated Fe moments (5 mu_B) is compensated by an external field of 12T. This is close to the central field of the FISC phase, consistent with the Jaccarino-Peter local field-compensation mechanism for FISC (Phys. Rev. Lett. 9, 290 (1962))

    Temperature-driven transition from the Wigner Crystal to the Bond-Charge-Density Wave in the Quasi-One-Dimensional Quarter-Filled band

    Full text link
    It is known that within the interacting electron model Hamiltonian for the one-dimensional 1/4-filled band, the singlet ground state is a Wigner crystal only if the nearest neighbor electron-electron repulsion is larger than a critical value. We show that this critical nearest neighbor Coulomb interaction is different for each spin subspace, with the critical value decreasing with increasing spin. As a consequence, with the lowering of temperature, there can occur a transition from a Wigner crystal charge-ordered state to a spin-Peierls state that is a Bond-Charge-Density Wave with charge occupancies different from the Wigner crystal. This transition is possible because spin excitations from the spin-Peierls state in the 1/4-filled band are necessarily accompanied by changes in site charge densities. We apply our theory to the 1/4-filled band quasi-one-dimensional organic charge-transfer solids in general and to 2:1 tetramethyltetrathiafulvalene (TMTTF) and tetramethyltetraselenafulvalene (TMTSF) cationic salts in particular. We believe that many recent experiments strongly indicate the Wigner crystal to Bond-Charge-Density Wave transition in several members of the TMTTF family. We explain the occurrence of two different antiferromagnetic phases but a single spin-Peierls state in the generic phase diagram for the 2:1 cationic solids. The antiferromagnetic phases can have either the Wigner crystal or the Bond-Charge-Spin-Density Wave charge occupancies. The spin-Peierls state is always a Bond-Charge-Density Wave.Comment: 12 pages, 8 EPS figures. Longer version of previous manuscript. Contains new numerical data as well as greatly expanded discussio

    Superconductivity in Pr2Ba4Cu7O15-delta with metallic double chains

    Full text link
    We report superconductivity with Tc,onsetT_{c,onset}=\sim10K in Pr2_{2}Ba4_{4}Cu7_{7}O15δ_{15-\delta} compound possessing metallic double chains. A reduction treatment on as-sintered samples causes not only the enhanced metallic conduction but also the appearance of superconductivity accompanied by the c-axis elongation due to oxygen deficiency

    Nuclear spin-spin coupling in La_{2-x}Sr_{x}CuO_{4} studied by stimulated echo decay

    Full text link
    We have performed copper NQR experiments in high temperature superconductors YBa_{2}Cu_{4}O_{8}, YBa_{2}Cu_{3}O_{7}, and La_{2-x}Sr_{x}CuO_{4} (x=0.12 and 0.15), using the stimulated echo technique. The stimulated echo intensity is analyzed by a model that includes the spin-lattice relaxation process (T_ {1 }-process) and the fluctuating local field due to nuclear spin-spin coupling. The model gives quantitative account of the experimental results in Y-based compounds using the known values of 1/T_{1} and 1/T_{2G}, the gaussian decay rate of the spin echo intensity. The same model applied to LSCO enables us to extract the value of T_{2G}. Our results indicate that T_{1}T/T_{2G} is independent of temperature, implying that the dynamic exponent is one in La_{2-x}Sr_{x}CuO_{4}.Comment: 14 pages, 11 fugures, The bibliography field is correcte

    Effects of acute intermittent hypoxia on corticospinal excitability within the primary motor cortex

    Get PDF
    Purpose Acute intermittent hypoxia (AIH) is a safe and non-invasive treatment approach that uses brief, repetitive periods of breathing reduced oxygen air alternated with normoxia. While AIH is known to affect spinal circuit excitability, the effects of AIH on cortical excitability remain largely unknown. We investigated the effects of AIH on cortical excitability within the primary motor cortex. Methods Eleven healthy, right-handed participants completed two testing sessions: (1) AIH (comprising 3 min in hypoxia [fraction of inspired oxygen ~ 10%] and 2 min in normoxia repeated over five cycles) and (2) normoxia (NOR) (equivalent duration to AIH). Single- and paired-pulse transcranial magnetic stimulations were delivered to the primary motor cortex, before and 0, 25, and 50 min after AIH and normoxia. Results The mean nadir in arterial oxygen saturation was lower (p  0.05). There was no association between arterial oxygen saturation and changes in corticospinal excitability after AIH (r = 0.05, p = 0.87). Conclusion Overall, AIH did not modify either corticospinal excitability or excitability of intracortical facilitatory and inhibitory circuits within the primary motor cortex. Future research should explore whether a more severe or individualised AIH dose would induce consistent, measurable changes in corticospinal excitability
    corecore