27 research outputs found

    FIGNL1 AAA+ ATPase remodels RAD51 and DMC1 filaments in pre-meiotic DNA replication and meiotic recombination

    Get PDF
    Ito M., Furukohri A., Matsuzaki K., et al. FIGNL1 AAA+ ATPase remodels RAD51 and DMC1 filaments in pre-meiotic DNA replication and meiotic recombination. Nature Communications 14, 6857 (2023); https://doi.org/10.1038/s41467-023-42576-w.The formation of RAD51/DMC1 filaments on single-stranded (ss)DNAs essential for homology search and strand exchange in DNA double-strand break (DSB) repair is tightly regulated. FIGNL1 AAA+++ ATPase controls RAD51-mediated recombination in human cells. However, its role in gametogenesis remains unsolved. Here, we characterized a germ line-specific conditional knockout (cKO) mouse of FIGNL1. Fignl1 cKO male mice showed defective chromosome synapsis and impaired meiotic DSB repair with the accumulation of RAD51/DMC1 on meiotic chromosomes, supporting a positive role of FIGNL1 in homologous recombination at a post-assembly stage of RAD51/DMC1 filaments. Fignl1 cKO spermatocytes also accumulate RAD51/DMC1 on chromosomes in pre-meiotic S-phase. These RAD51/DMC1 assemblies are independent of meiotic DSB formation. We also showed that purified FIGNL1 dismantles RAD51 filament on double-stranded (ds)DNA as well as ssDNA. These results suggest an additional role of FIGNL1 in limiting the non-productive assembly of RAD51/DMC1 on native dsDNAs during pre-meiotic S-phase and meiotic prophase I

    Replication protein-A, RPA, plays a pivotal role in the maintenance of recombination checkpoint in yeast meiosis

    Get PDF
    Sampathkumar A., Zhong C., Tang Y., et al. Replication protein-A, RPA, plays a pivotal role in the maintenance of recombination checkpoint in yeast meiosis. Scientific Reports 14, 9550 (2024); https://doi.org/10.1038/s41598-024-60082-x.DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant

    In Silico Model for Chemical-Induced Chromosomal Damages Elucidates Mode of Action and Irrelevant Positives

    No full text
    In silico tools to predict genotoxicity have become important for high-throughput screening of chemical substances. However, current in silico tools to evaluate chromosomal damage do not discriminate in vitro-specific positives that can be followed by in vivo tests. Herein, we establish an in silico model for chromosomal damages with the following approaches: (1) re-categorizing a previous data set into three groups (positives, negatives, and misleading positives) according to current reports that use weight-of-evidence approaches and expert judgments; (2) utilizing a generalized linear model (Elastic Net) that uses partial structures of chemicals (organic functional groups) as explanatory variables of the statistical model; and (3) interpreting mode of action in terms of chemical structures identified. The accuracy of our model was 85.6%, 80.3%, and 87.9% for positive, negative, and misleading positive predictions, respectively. Selected organic functional groups in the models for positive prediction were reported to induce genotoxicity via various modes of actions (e.g., DNA adduct formation), whereas those for misleading positives were not clearly related to genotoxicity (e.g., low pH, cytotoxicity induction). Therefore, the present model may contribute to high-throughput screening in material design or drug discovery to verify the relevance of estimated positives considering their mechanisms of action

    Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms

    No full text
    Sexual dysfunction can be caused by impaired neurotransmission from the peripheral to the central nervous system. Therefore, it is important to evaluate the input of sensory information from the peripheral genital area and investigate the control mechanisms in the spinal cord to clarify the pathological basis of sensory abnormalities in the genital area. However, an in vivo evaluation system for the spinal cord–penile neurotransmission mechanism has not yet been developed. Here, urethane-anesthetized rats were used to evaluate neuronal firing induced by innocuous or nociceptive stimulation of the penis using extracellular recording or patch-clamp techniques in the lumbosacral spinal dorsal horn and electrophysiological evaluation in the peripheral pelvic nerves. As a result, innocuous and nociceptive stimuli-evoked neuronal firing was successfully recorded in the deep and superficial spinal dorsal horns, respectively. The innocuous stimuli-evoked nerve firing was also recorded in the pelvic nerve. These firings were suppressed by lidocaine. To the best of our knowledge, this is the first report of a successful quantitative evaluation of penile stimuli-evoked neuronal firing. This method is not only useful for analyzing the pathological basis of spinal cord–penile neurotransmission in sexual dysfunction but also provides a useful evaluation system in the search for new treatments

    Postpartum infective endocarditis with Enterococcus faecalis in Japan: a case report

    No full text
    Abstract Background The clinical characteristics of infective endocarditis include the presence of predisposing cardiac disease, a history of illegal drug use, and high morbidity in the elderly. Only a few cases of the disease after delivery have been reported in the literature. We describe here a first case of enterococcal postpartum infective endocarditis without underlying disease in Japan. Case presentation We report the case of a 31-year-old Japanese woman with postpartum infective endocarditis by Enterococcus faecalis. She had no significant medical history or any unusual social history. After emergency surgery for severe mitral regurgitation and antimicrobial treatment for 6 weeks, she was discharged from our hospital and is now being monitored at an out-patient clinic. Conclusions We encountered a case of Enterococcus faecalis infective endocarditis that occurred in the native valve of a postpartum healthy woman. Although the pathogenesis of this case remains unclear, it could be due to bacteremia arising from the administration of prophylactic broad-spectrum antibiotics used for cesarean section. Previous use of cefotiam and urinary catheter insertion may be risk factors for nosocomial enterococcal bacteremia in this case

    Necessity for retrospective evaluation of past-positive chemicals in in vitro chromosomal aberration tests using recommended cytotoxicity indices

    No full text
    Abstract We have demonstrated that retrospective evaluation of existing data of in vitro chromosomal aberration test using the new cytotoxicity indices RICC (relative increase in cell count) or RPD (relative population doubling) reduces the false-positive rate. We have constructed an algorithm to predict the likelihood that past-positive results would differ when retested accordingly. Here, we emphasize the importance of reviewing existing in vitro chromosomal aberration test results. The present Letter not only supports the rediscovery of potentially useful chemicals excluded from further development as a result of misclassification due to in vitro false-positive results, but also contributes to the development of a precise Quantitative Structure-Activity Relationship (QSAR) model by providing an appropriate training data-set. Furthermore, re-evaluation is expected to provide novel insights into underlying mechanisms and/or key structures involved in the development of chromosomal aberrations

    Genotoxicity evaluation of alpha-linolenic acid-diacylglycerol oil

    Get PDF
    The alpha-linolenic acid (ALA)-diacylglycerol (DAG) oil is an edible oil enriched with DAG (>80%) and ALA (>50%). Although DAG oil, which mainly consists of oleic and linoleic acids has no genotoxic concerns, the fatty acid composition could affect the chemical property of DAG. Therefore, the purpose of this study was to evaluate the genotoxicity of ALA-DAG oil using standard genotoxicity tests in accordance with the OECD guidelines. ALA-DAG oil showed negative results in the bacterial reverse mutation test (Ames test) and in vitro micronucleus test in cultured Chinese hamster lung cells with and without metabolic activation, and in the in vivo bone marrow micronucleus test in mice. Our results did not show any genotoxicity, suggesting that the fatty acid composition had no deleterious effects. We conclude that ALA-DAG oil had no genotoxicity concerns under the testing conditions. Keywords: Alpha-linolenic acid-rich diacylglycerol, Diacylglycerol, Alpha-linolenic acid, Fatty acid composition, Genotoxicit

    Involvement of Histamine H3 Receptor Agonism in Premature Ejaculation Found by Studies in Rats

    No full text
    Several of the drugs currently available for the treatment of premature ejaculation (PE) (e.g., local anesthetics or antidepressants) are associated with numerous safety concerns and exhibit weak efficacy. To date, no therapeutics for PE have been approved in the United States, highlighting the need to develop novel agents with sufficient efficacy and fewer side effects. In this study, we focused on the histamine H3 receptor (H3R) as a potential target for the treatment of PE and evaluated the effects of imetit (an H3R/H4R agonist), ciproxifan (an H3R antagonist), and JNJ-7777120 (an H4R antagonist) in vivo. Our in vivo electrophysiological experiments revealed that imetit reduced mechanical stimuli-evoked neuronal firing in anesthetized rats. This effect was inhibited by ciproxifan but not by JNJ-7777120. Subsequently, we evaluated the effect of imetit using a copulatory behavior test to assess ejaculation latency (EL) in rats. Imetit prolonged EL, although this effect was inhibited by ciproxifan. These findings indicate that H3R stimulation suppresses mechanical stimuli-evoked neuronal firing in the spinal–penile neurotransmission system, thereby resulting in prolonged EL. To our knowledge, this is the first report to describe the relationship between H3R and PE. Thus, H3R agonists may represent a novel treatment option for PE

    Mutational analysis of Mei5, a subunit of Mei5-Sae3 complex, in Dmc1-mediated recombination during yeast meiosis

    Full text link
    This is the peer reviewed version of the following article: Mwaniki S., Sawant P., Osemwenkhae O.P., et al. Mutational analysis of Mei5, a subunit of Mei5-Sae3 complex, in Dmc1-mediated recombination during yeast meiosis. Genes to Cells , (2024); https://doi.org/10.1111/gtc.13138, which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.Interhomolog recombination in meiosis is mediated by the Dmc1 recombinase. The Mei5-Sae3 complex of Saccharomyces cerevisiae promotes Dmc1 assembly and functions with Dmc1 for homology-mediated repair of meiotic DNA double-strand breaks. How Mei5-Sae3 facilitates Dmc1 assembly remains poorly understood. In this study, we created and characterized several mei5 mutants featuring the amino acid substitutions of basic residues. We found that Arg97 of Mei5, conserved in its ortholog, SFR1 (complex with SWI5), RAD51 mediator, in humans and other organisms, is critical for complex formation with Sae3 for Dmc1 assembly. Moreover, the substitution of either Arg117 or Lys133 with Ala in Mei5 resulted in the production of a C-terminal truncated Mei5 protein during yeast meiosis. Notably, the shorter Mei5-R117A protein was observed in meiotic cells but not in mitotic cells when expressed, suggesting a unique regulation of Dmc1-mediated recombination by posttranslational processing of Mei5-Sae3
    corecore