20 research outputs found

    J- and Ks-band Galaxy Counts and Color Distributions in the AKARI North Ecliptic Pole Field

    Get PDF
    We present the J- and Ks-band galaxy counts and galaxy colors covering 750 square arcminutes in the deep AKARI North Ecliptic Pole (NEP) field, using the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer (FLAMINGOS) on the Kitt Peak National Observatory (KPNO) 2.1m telescope. The limiting magnitudes with a signal-to-noise ratio of three in the deepest regions are 21.85 and 20.15 in the J- and Ks-bands respectively in the Vega magnitude system. The J- and Ks-band galaxy counts in the AKARI NEP field are broadly in good agreement with those of other results in the literature, however we find some indication of a change in the galaxy number count slope at J~19.5 and over the magnitude range 18.0 < Ks < 19.5. We interpret this feature as a change in the dominant population at these magnitudes because we also find an associated change in the B - Ks color distribution at these magnitudes where the number of blue samples in the magnitude range 18.5 < Ks < 19.5 is significantly larger than that of Ks < 17.5

    Detection of an H-alpha Emission Line on a Quasar, RX J1759.4+6638, at z=4.3 with AKARI

    Full text link
    We report the detection of an H-alpha emission line in the low resolution spectrum of a quasar, RX J1759.4+6638, at a redshift of 4.3 with the InfraRed Camera (IRC) onboard the AKARI. This is the first spectroscopic detection of an H-alpha emission line in a quasar beyond z=4. The overall spectral energy distribution (SED) of RX J1759.4+6638 in the near- and mid-infrared wavelengths agrees with a median SED of the nearby quasars and the flux ratio of F(Ly-alpha)/F(H-alpha) is consistent with those of previous reports for lower-redshift quasars.Comment: 9pages, 3 figures, Publications of the Astronomical Society of Japan, in pres

    Star Formation and AGN activity in Galaxies classified using the 1.6 {\mu}m Bump and PAH features at z=0.4−2z = 0.4-2

    Full text link
    We have studied the star-formation and AGN activity of massive galaxies in the redshift range z=0.4−2z=0.4-2, which are detected in a deep survey field using the AKARI InfraRed (IR) astronomical satellite and {\em Subaru} telescope toward the North Ecliptic Pole (NEP). The AKARI/IRC Mid-InfraRed (MIR) multiband photometry is used to trace their star-forming activities with the Polycyclic-Aromatic Hydrocarbon (PAH) emissions, which is also used to distinguish star-forming populations from AGN dominated ones and to estimate the Star Formation Rate (SFR) derived from their total emitting IR (TIR) luminosities. In combination with analyses of their stellar components, we have studied the MIR SED features of star-forming and AGN-harboring galaxies.Comment: 45 pages and 63 figures, will be published in PASJ Vol.64 No.

    Near-infrared and Mid-infrared Spectroscopy with the Infrared Camera (IRC) for AKARI

    Full text link
    The Infrared Camera (IRC) is one of the two instruments on board the AKARI satellite. In addition to deep imaging from 1.8-26.5um for the pointed observation mode of the AKARI, it has a spectroscopic capability in its spectral range. By replacing the imaging filters by transmission-type dispersers on the filter wheels, it provides low-resolution (lambda/d_lambda ~ 20-120) spectroscopy with slits or in a wide imaging field-of-view (approximately 10'X10'). The IRC spectroscopic mode is unique in space infrared missions in that it has the capability to perform sensitive wide-field spectroscopic surveys in the near- and mid-infrared wavelength ranges. This paper describes specifications of the IRC spectrograph and its in-orbit performance.Comment: 13 pages, 7 figures, accepted for publication on PAS

    AKARI infrared imaging of reflection nebulae IC4954 and IC4955

    Full text link
    We present the observations of the reflection nebulae IC4954 and IC4955 region with the Infrared Camera (IRC) and the Far-Infrared Surveyor (FIS) on board the infrared astronomical satellite AKARI during its performance verification phase. We obtained 7 band images from 7 to 160um with higher spatial resolution and higher sensitivities than previous observations. The mid-infrared color of the S9W (9um) and L18W (18um) bands shows a systematic variation around the exciting sources. The spatial variation in the mid-infrared color suggests that the star-formation in IC4954/4955 is progressing from south-west to north-east. The FIS data also clearly resolve two nebulae for the first time in the far-infrared. The FIS 4-band data from 65um to 160um allow us to correctly estimate the total infrared luminosity from the region, which is about one sixth of the energy emitted from the existing stellar sources. Five candidates for young stellar objects have been detected as point sources for the first time in the 11um image. They are located in the red S9W to L18W color regions, suggesting that current star-formation has been triggered by previous star-formation activities. A wide area map of the size of about 1 x 1 (deg^2) around the IC4954/4955 region was created from the AKARI mid-infrared all-sky survey data. Together with the HI 21cm data, it suggests a large hollow structure of a degree scale, on whose edge the IC4954/4955 region has been created, indicating star formation over three generations in largely different spatial scales.Comment: 23 pages, 7 figures, accepted for publication in PASJ AKARI special issu

    The Subaru-XMM-Newton Deep Survey (SXDS) VIII.: Multi-wavelength Identification, Optical/NIR Spectroscopic Properties, and Photometric Redshifts of X-ray Sources

    Full text link
    We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1.4GHz radio and i'-band variability surveys. Once candidates of Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65\% of the X-ray AGN candidates are spectroscopically-identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilising the multi-wavelength photometric data of the large sample of X-ray selected AGNs, we evaluate the stellar masses, M*, of the host galaxies of the narrow-line AGNs. The distribution of the stellar mass is remarkably constant from z=0.1 to 4.0. The relation between M* and 2--10 keV luminosity can be explained with strong cosmological evolution of the relationship between the black hole mass and M*. We also evaluate the scatter of the UV-MIR spectral energy distribution (SED) of the X-ray AGNs as a function of X-ray luminosity and absorption to the nucleus. The scatter is compared with galaxies which have redshift and stellar mass distribution matched with the X-ray AGN. The UV-NIR SEDs of obscured X-ray AGNs are similar to those of the galaxies in the matched sample. In the NIR-MIR range, the median SEDs of X-ray AGNs are redder, but the scatter of the SEDs of the X-ray AGN broadly overlaps that of the galaxies in the matched sample.Comment: Accepted for publication in PASJ Subaru special issue. 42 pages, 22 figures. Entire contents of Tables 3, 8, 9, 10, and 11, and ASCII format tables are available from http://www.astr.tohoku.ac.jp/~akiyama/SXDS/index.htm

    Number Density Evolution of Ks -band Selected High Redshift Galaxy Populations in the AKARI North Ecliptic Pole Field

    Full text link
    We present the number counts of Ks-band selected high redshift galaxy populations such as extremely red objects (EROs), B, z & K -band selected galaxies (BzKs) and distant red galaxies (DRGs) in the AKARI NEP field. The final catalogue contains 308 EROs (Ks<19.0 ; 54 percent are dusty star-forming EROs and the rest are passive old EROs), 137 star-forming BzKs and 38 passive old BzKs (Ks<19.0) and 64 DRGs (Ks<18.6). We also produce individual component source counts for both the dusty star-forming and passive populations. We compare the observed number counts of the high redshift passively evolving galaxy population with a backward pure luminosity evolution (PLE) model allowing different degrees of number density evolution. We find that the PLE model without density evolution fails to explain the observed counts at faint magnitudes, while the model incorporating negative density evolution is consistent with the observed counts of the passively evolving population. We also compare our observed counts of dusty star-forming EROs with a phenomenological evolutionary model postulating that the near-infrared EROs can be explained by the source densities of the far-infrared - submillimetre populations. Our model predicts that the dusty ERO source counts can be explained assuming a 25 percent contribution of submillimetre star-forming galaxies with the majority of brighter Ks -band detected dusty EROs having luminous (rather than HR10 type ultra-luminous) submillimetre counterparts. We propose that the fainter Ks>19.5 population is dominated by the sub-millijansky submillimetre population. We also predict a turnover in in dusty ERO counts around 19<Ks<20.Comment: (37 pages, 14 figures accepted for publication in The Astrophysical Journal

    Nature of Infrared Sources in 11 micron Selected Sample from Early Data of the AKARI North Ecliptic Pole Deep Survey

    Full text link
    We present the properties of 11 μ\mum selected sources detected in the early data of the North Ecliptic Pole Deep (NEP-Deep) Survey of AKARI. The data set covers 6 wavelength bands from 2.5 to 11 μ\mum, with the exposure time of 10 ~ 20 minutes. This field lies within the CFHT survey with four filter bands (g′,r′,i′,z′),enablingustoestablishnearlycontinuousspectralenergydistributions(SEDs)forwavelengthsrangingfrom0.4to11g', r', i',z'), enabling us to establish nearly continuous spectral energy distributions (SEDs) for wavelengths ranging from 0.4 to 11 \mum.Themainsamplestudiedhereconsistsof71sourceswhose11m. The main sample studied here consists of 71 sources whose 11 \mumABmagnitudesareequaltoorbrighterthan18.5(251m AB magnitudes are equal to or brighter than 18.5 (251 \muJy),whichiscompletetomorethan90Jy), which is complete to more than 90%. The 11 \mumbandhasanadvantageofsamplingstarforminggalaxieswithlowtomediumredshiftssincetheprominentPAHfeatureshiftsintothisband.Asexpected,wefindthatthemajority( 68m band has an advantage of sampling star forming galaxies with low to medium redshifts since the prominent PAH feature shifts into this band. As expected, we find that the majority (~68%) of 11 \mumbrightsourcesarestarforminggalaxiesat0.2<z<0.7withm bright sources are star forming galaxies at 0.2 < z < 0.7 with L_{IR} ~ 10^{10}−− -- 10^{12} L_{\odot}$ based on the detailed modelling of SEDs. We also find four AGNs lying at various redshifts in the main sample. In addition, we discuss a few sources which have non-typical SEDs of the main sample, including a brown dwarf candidate, a steep power-law source, flat spectrum object, and an early-type galaxy at moderate redshift.Comment: 22 pages, 10 figure
    corecore