1,448 research outputs found

    A Large Blue Shift of the Biexciton State in Tellurium Doped CdSe Colloidal Quantum Dots

    Full text link
    The exciton-exciton interaction energy of Tellurium doped CdSe colloidal quantum dots is experimentally investigated. The dots exhibit a strong Coulomb repulsion between the two excitons, which results in a huge measured biexciton blue shift of up to 300 meV. Such a strong Coulomb repulsion implies a very narrow hole wave function localized around the defect, which is manifested by a large Stokes shift. Moreover, we show that the biexciton blue shift increases linearly with the Stokes shift. This result is highly relevant for the use of colloidal QDs as optical gain media, where a large biexciton blue shift is required to obtain gain in the single exciton regime.Comment: 9 pages, 4 figure

    Magnetic-Field Dependence of Tunnel Couplings in Carbon Nanotube Quantum Dots

    Get PDF
    By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.Comment: 5 pages, 3 figures; revised version as publishe

    Acoustic Phonon-Assisted Resonant Tunneling via Single Impurities

    Full text link
    We perform the investigations of the resonant tunneling via impurities embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the I(V)I(V) characteristics measured at 30mK, the contribution of individual donors is resolved and the fingerprints of phonon assistance in the tunneling process are seen. The latter is confirmed by detailed analysis of the tunneling rates and the modeling of the resonant tunneling contribution to the current. Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge singularities are observed.Comment: accepted in Phys. Rev.

    Spins in few-electron quantum dots

    Full text link
    This review describes the physics of spins in quantum dots containing one or two electrons, from an experimentalist's viewpoint. Various methods for extracting spin properties from experiment are presented, restricted exclusively to electrical measurements. Furthermore, experimental techniques are discussed that allow for: (1) the rotation of an electron spin into a superposition of up and down, (2) the measurement of the quantum state of an individual spin and (3) the control of the interaction between two neighbouring spins by the Heisenberg exchange interaction. Finally, the physics of the relevant relaxation and dephasing mechanisms is reviewed and experimental results are compared with theories for spin-orbit and hyperfine interactions. All these subjects are directly relevant for the fields of quantum information processing and spintronics with single spins (i.e. single-spintronics).Comment: final version (52 pages, 49 figures), Rev. Mod. Phy

    Hyperfine-mediated transitions between a Zeeman split doublet in GaAs quantum dots: The role of the internal field

    Full text link
    We consider the hyperfine-mediated transition rate between Zeeman split spin states of the lowest orbital level in a GaAs quantum dot. We separate the hyperfine Hamiltonian into a part which is diagonal in the orbital states and another one which mixes different orbitals. The diagonal part gives rise to an effective (internal) magnetic field which, in addition to an external magnetic field, determines the Zeeman splitting. Spin-flip transitions in the dots are induced by the orbital mixing part accompanied by an emission of a phonon. We evaluate the rate for different regimes of applied magnetic field and temperature. The rates we find are bigger that the spin-orbit related rates provided the external magnetic field is sufficiently low.Comment: 8 pages, 3 figure

    Electron transport through double quantum dots

    Full text link
    Electron transport experiments on two lateral quantum dots coupled in series are reviewed. An introduction to the charge stability diagram is given in terms of the electrochemical potentials of both dots. Resonant tunneling experiments show that the double dot geometry allows for an accurate determination of the intrinsic lifetime of discrete energy states in quantum dots. The evolution of discrete energy levels in magnetic field is studied. The resolution allows to resolve avoided crossings in the spectrum of a quantum dot. With microwave spectroscopy it is possible to probe the transition from ionic bonding (for weak inter-dot tunnel coupling) to covalent bonding (for strong inter-dot tunnel coupling) in a double dot artificial molecule. This review on the present experimental status of double quantum dot studies is motivated by their relevance for realizing solid state quantum bits.Comment: 32 pages, 31 figure

    Millisecond-range electron spin memory in singly-charged InP quantum dots

    Full text link
    We report millisecond-range spin memory of resident electrons in an ensemble of InP quantum dots (QDs) under a small magnetic field of 0.1 T applied along the optical excitation axis at temperatures up to about 5 K. A pump-probe photoluminescence (PL) technique is used for optical orientation of electron spins by the pump pulses and for study of spin relaxation over the long time scale by measuring the degree of circular polarization of the probe PL as a function of pump-probe delay. Dependence of spin decay rate on magnetic field and temperature suggests two-phonon processes as the dominant spin relaxation mechanism in this QDs at low temperatures.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads

    Full text link
    We analyze numerically the spin-dependent transport through coherent chains of three coupled quantum dots weakly connected to external magnetic leads. In particular, using the diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that transport characteristics greatly depend on the strength of the interdot Coulomb correlations, which determines the spacial distribution of electron wave function in the chain. When the correlations are relatively strong, depending on the transport regime, we find both negative TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel magnetoresistance is associated with selection rules that govern tunneling processes and various high-spin states of the chain that are relevant for transport. For weak interdot correlations, on the other hand, the TMR is always positive and not larger than the Julliere TMR, although super-Poissonian shot noise and NDC can still be observed

    Double Quantum Dots as Detectors of High-Frequency Quantum Noise in Mesoscopic Conductors

    Full text link
    We propose a measurement set-up for detecting quantum noise over a wide frequency range using inelastic transitions in a tunable two-level system as a detector. The frequency-resolving detector consists of a double quantum dot which is capacitively coupled to the leads of a nearby mesoscopic conductor. The inelastic current through the double quantum dot is calculated in response to equilibrium and non-equilibrium current fluctuations in the nearby conductor, including vacuum fluctuations at very low temperatures. As a specific example, the fluctuations across a quantum point contact are discussed.Comment: 4 pages, 4 figures. Final version to appear in Physical Review Letter
    corecore