2,641 research outputs found
Evolution of the electronic structure across the filling-control and bandwidth-control metal-insulator transitions in pyrochlore-type Ru oxides
We have performed photoemission and soft x-ray absorption studies of
pyrochlore-type Ru oxides, namely, the filling-control system
SmCaRuO and the bandwidth-control system
SmBiRuO, which show insulator-to-metal transition with
increasing Ca and Bi concentration, respectively. Core levels and the O 2
valence band in SmCaRuO show almost the same amount of
monotonous upward energy shifts with Ca concentration, which indicates that the
chemical potential is shifted downward due to hole doping. The Ru 4 band in
SmCaRuO is also shifted toward the Fermi level () with
hole doping and the density of states (DOS) at increases. The core levels
in SmBiRuO, on the other hand, do not show clear energy
shifts except for the Ru 3 core level, whose line shape change also reflects
the increase of metallic screening with Bi concentration. We observe pronounced
spectral weight transfer from the incoherent to the coherent parts of the Ru 4d
band with Bi concentration, which is expected for a bandwidth-control
Mott-Hubbard system. The increase of the DOS at is more abrupt in the
bandwidth-control SmBiRuO than in the filling-control
SmCaRuO, in accordance with a recent theoretical
prediction. Effects of charge transfer between the Bi 6 band and the Ru
4 band are also discussed.Comment: 11 pages, 6 figure
Chemical potential shift in La(1-x)Sr(x)MnO(3): Photoemission test of the phase separation scenario
We have studied the chemical potential shift in La(1-x)Sr(x)MnO(3) as a
function of doped hole concentration by core-level x-ray photoemission. The
shift is monotonous, which means that there is no electronic phase separation
on a macroscopic scale, whereas it is consistent with the nano-meter scale
cluster formation induced by chemical disorder. Comparison of the observed
shift with the shift deduced from the electronic specific heat indicates that
hole doping in La(1-x)Sr(x)MnO(3) is well described by the rigid-band picture.
In particular no mass enhancement toward the metal-insulator boundary was
implied by the chemical potential shift, consistent with the electronic
specific heat data.Comment: 7 pages, 3 figures, to be published in Europhysics Letter
On the origin of magnetoresistance in SrFeMoO
We report detailed magnetization () and magnetoresistance () studies
on a series of SrFeMoO samples with independent control on anti-site
defect and grain boundary densities. These results, exhibiting a switching-like
behavior of with , establish that the is controlled by the
magnetic polarization of grain boundary regions, rather than of the grains
within a resonant tunnelling mechanism.Comment: 4 pages, 4 figure
Orbital ordering in LaSrMnO studied by model Hartree-Fock calculation
We have investigated orbital ordering in the half-doped manganite
LaSrMnO, which displays spin, charge and orbital ordering,
by means of unrestricted Hartree-Fock calculations on the multiband -
model. From recent experiment, it has become clear that
LaSrMnO exhibits a cross-type orbital
ordering rather than the widely believed rod-type orbital
ordering. The calculation reveals that cross-type orbital
ordering results from an effect of in-plane distortion as well as from the
relatively long out-of-plane Mn-O distance. For the "Mn" site, it is
shown that the elongation along the c-axis of the MnO octahedra leads to an
anisotropic charge distribution rather than the isotropic one.Comment: 4 pages, 5 figure
Potential Profiling of the Nanometer-Scale Charge Depletion Layer in n-ZnO/p-NiO Junction Using Photoemission Spectroscopy
We have performed a depth-profile analysis of an all-oxide p-n junction diode
n-ZnO/p-NiO using photoemission spectroscopy combined with Ar-ion sputtering.
Systematic core-level shifts were observed during the gradual removal of the
ZnO overlayer, and were interpreted using a simple model based on charge
conservation. Spatial profile of the potential around the interface was
deduced, including the charge-depletion width of 2.3 nm extending on the ZnO
side and the built-in potential of 0.54 eV
Modulation Doping of a Mott Quantum Well by a Proximate Polar Discontinuity
We present evidence for hole injection into LaAlO3/LaVO3/LaAlO3 quantum wells
near a polar surface of LaAlO3 (001). As the surface is brought in proximity to
the LaVO3 layer, an exponential drop in resistance and a decreasing positive
Seebeck coefficient is observed below a characteristic coupling length of 10-15
unit cells. We attribute this behavior to a crossover from an atomic
reconstruction of the AlO2-terminated LaAlO3 surface to an electronic
reconstruction of the vanadium valence. These results suggest a general
approach to tunable hole-doping in oxide thin film heterostructures.Comment: 16 pages, 7 figure
Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy
We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by
core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type"
interfaces, Ti3+ signals appeared, which were absent for insulating "p-type"
interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well
below the critical thickness of 4 unit cells for metallic transport. Core-level
shifts with LaAlO3 thickness were much smaller than predicted by the polar
catastrophe model. We attribute these observations to surface
defects/adsorbates providing charges to the interface even below the critical
thickness
- …