199 research outputs found

    Atomic structures and functional implications of the archaeal RecQ-like helicase Hjm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pyrococcus furiosus </it>Hjm (<it>Pfu</it>Hjm) is a structure-specific DNA helicase that was originally identified by <it>in vitro </it>screening for Holliday junction migration activity. It belongs to helicase superfamily 2, and shares homology with the human DNA polymerase Θ (PolΘ), HEL308, and <it>Drosophila </it>Mus308 proteins, which are involved in DNA repair. Previous biochemical and genetic analyses revealed that <it>Pfu</it>Hjm preferentially binds to fork-related Y-structured DNAs and unwinds their double-stranded regions, suggesting that this helicase is a functional counterpart of the bacterial RecQ helicase, which is essential for genome maintenance. Elucidation of the DNA unwinding and translocation mechanisms by <it>Pfu</it>Hjm will require its three-dimensional structure at atomic resolution.</p> <p>Results</p> <p>We determined the crystal structures of <it>Pfu</it>Hjm, in two apo-states and two nucleotide bound forms, at resolutions of 2.0–2.7 Å. The overall structures and the local conformations around the nucleotide binding sites are almost the same, including the side-chain conformations, irrespective of the nucleotide-binding states. The architecture of Hjm was similar to that of <it>Archaeoglobus fulgidus </it>Hel308 complexed with DNA. An Hjm-DNA complex model, constructed by fitting the five domains of Hjm onto the corresponding Hel308 domains, indicated that the interaction of Hjm with DNA is similar to that of Hel308. Notably, sulphate ions bound to Hjm lie on the putative DNA binding surfaces. Electron microscopic analysis of an Hjm-DNA complex revealed substantial flexibility of the double stranded region of DNA, presumably due to particularly weak protein-DNA interactions. Our present structures allowed reasonable homology model building of the helicase region of human PolΘ, indicating the strong conformational conservation between archaea and eukarya.</p> <p>Conclusion</p> <p>The detailed comparison between our DNA-free <it>Pfu</it>Hjm structure and the structure of Hel308 complexed with DNA suggests similar DNA unwinding and translocation mechanisms, which could be generalized to all of the members in the same family. Structural comparison also implied a minor rearrangement of the five domains during DNA unwinding reaction. The unexpected small contact between the DNA duplex region and the enzyme appears to be advantageous for processive helicase activity.</p

    Room-temperature plasticity of a nanosized GaN crystal

    Get PDF
    GaN wurtzite crystal is commonly regarded as eminently brittle. However, our research demonstrates that nanodeconfined GaN compressed along the M direction begins to exhibit room-temperature plasticity, yielding a dislocation-free structure despite the occurrence of considerable, irreversible deformation. Our interest in M-oriented, strained GaN nanoobjects was sparked by the results of first-principles bandgap calculations, whereas subsequent nanomechanical tests and ultrahigh-voltage (1250 kV) transmission electron microscopy observations confirmed the authenticity of the phenomenon. Moreover, identical experiments along the C direction produced only a quasi-brittle response. Precisely how this happens is demonstrated by molecular dynamics simulations of the deformation of the C- and M-oriented GaN frustum, which mirror our nanopillar crystals

    MLH1-mediated recruitment of FAN1 to chromatin for the induction of apoptosis triggered by O6-methylguanine

    Get PDF
    O6 -Methylguanines (O6 -meG), which are produced in DNA by the action of alkylating agents, are mutagenic and cytotoxic, and induce apoptosis in a mismatch repair (MMR) protein-dependent manner. To understand the molecular mechanism of O6 -meG-induced apoptosis, we performed functional analyses of FANCD2 and FANCI-associated nuclease 1 (FAN1), which was identified as an interacting partner of MLH1. Immunoprecipitation analyses showed that FAN1 interacted with both MLH1 and MSH2 after treatment with N-methyl-N-nitrosourea (MNU), indicating the formation of a FAN1-MMR complex. In comparison with control cells, FAN1-knockdown cells were more resistant to MNU, and the appearances of a sub-G1 population and caspase-9 activation were suppressed. FAN1 formed nuclear foci in an MLH1-dependent manner after MNU treatment, and some were colocalized with both MLH1 foci and single-stranded DNA (ssDNA) created at damaged sites. Under the same condition, FANCD2 also formed nuclear foci, although it was dispensable for the formation of FAN1 foci and ssDNA. MNU-induced formation of ssDNA was dramatically suppressed in FAN1-knockdown cells. We therefore propose that FAN1 is loaded on chromatin through the interaction with MLH1 and produces ssDNA by its exonuclease activity, which contributes to the activation of the DNA damage response followed by the induction of apoptosis triggered by O6 -meG.福岡歯科大

    Significance of measurement of tumor marker in primary breast cancer

    Get PDF
    We investigated a prognosis in the presence or absence of preoperative marker abnormality for 371 cases with primary breast cancer that we experienced in our department this time. 60 (16%) of 371 cases showed the abnormality of the tumor marker and 25 (41.7%) of 60 patients had a recurrence. The positive rate of the marker was 8.1% in CA 15 3, 6.7% in CEA, 4.1% in NCC ST 439, and each rate of recurrence was 56.7%, 48.0%, 33.3%. Rate of recurrence in the negative cases was 12.7%, 13.9, 15.0% respectively and recognized a significant difference statistically (p <0.001) . Of 11 cases (3.8%) shown CA 15 3 abnormal high level, 3 cases (27.2%) had recurrence when we examined in 0 3 metastases to lymph nodes according to markers. 281 cases (96.2%) was normal range in CA15 3. Only 15 cases (5%) had recurrence. It showed a significant difference statistically (p <0.05) . For the cases shown abnormality of the preoperative CA 15 3, careful serial observations are necessary

    Biochemical properties and base excision repair complex formation of apurinic/apyrimidinic endonuclease from Pyrococcus furiosus

    Get PDF
    Apurinic/apyrimidinic (AP) sites are the most frequently found mutagenic lesions in DNA, and they arise mainly from spontaneous base loss or modified base removal by damage-specific DNA glycosylases. AP sites are cleaved by AP endonucleases, and the resultant gaps in the DNA are repaired by DNA polymerase/DNA ligase reactions. We identified the gene product that is responsible for the AP endonuclease activity in the hyperthermophilic euryarchaeon, Pyrococcus furiosus. Furthermore, we detected the physical interaction between P. furiosus AP endonuclease (PfuAPE) and proliferating cell nuclear antigen (PCNA; PfuPCNA) by a pull-down assay and a surface plasmon resonance analysis. Interestingly, the associated 3′–5′ exonuclease activity, but not the AP endonuclease activity, of PfuAPE was stimulated by PfuPCNA. Immunoprecipitation experiments using the P. furiosus cell extracts supported the interaction between PfuAPE and PfuPCNA in the cells. This is the first report describing the physical and functional interactions between an archaeal AP endonuclease and PCNA. We also detected the ternary complex of PfuPCNA, PfuAPE and Pfu uracil-DNA glycosylase. This complex probably functions to enhance the repair of uracil-containing DNA in P. furiosus cells

    The Ubiquitin Peptidase UCHL1 Induces G0/G1 Cell Cycle Arrest and Apoptosis Through Stabilizing p53 and Is Frequently Silenced in Breast Cancer

    Get PDF
    Background: Breast cancer (BrCa) is a complex disease driven by aberrant gene alterations and environmental factors. Recent studies reveal that abnormal epigenetic gene regulation also plays an important role in its pathogenesis. Ubiquitin carboxyl- terminal esterase L1 (UCHL1) is a tumor suppressor silenced by promoter methylation in multiple cancers, but its role and alterations in breast tumorigenesis remain unclear. Methodology/Principal Findings: We found that UCHL1 was frequently downregulated or silenced in breast cancer cell lines and tumor tissues, but readily expressed in normal breast tissues and mammary epithelial cells. Promoter methylation of UCHL1 was detected in 9 of 10 breast cancer cell lines (90%) and 53 of 66 (80%) primary tumors, but rarely in normal breast tissues, which was statistically correlated with advanced clinical stage and progesterone receptor status. Pharmacologic demethylation reactivated UCHL1 expression along with concomitant promoter demethylation. Ectopic expression of UCHL1 significantly suppressed the colony formation and proliferation of breast tumor cells, through inducing G0/G1 cell cycle arrest and apoptosis. Subcellular localization study showed that UCHL1 increased cytoplasmic abundance of p53. We further found that UCHL1 induced p53 accumulation and reduced MDM2 protein level, and subsequently upregulated the expression of p21, as well as cleavage of caspase3 and PARP, but not in catalytic mutant UCHL1 C90Sexpressed cells
    corecore