3,329 research outputs found

    Raman, infrared and optical spectra of the spin-Peierls compound NaV_2O_5

    Full text link
    We have measured polarized spectra of Raman scattering, infrared and optical transmission of NaV_2O_5 single crystals above the temperature of the spin-Peierls transition Tsp=35 K. Some of the far-infrared (FIR) phonon lines are strongly asymmetric, due to the spin-phonon interaction. In addition to the phonon lines, a broad band was observed in the c(aa)c Raman spectrum and in the E||a FIR transmission spectrum. A possible origin of these bands is discussed. The absorption band at 10000 cm-1 1.25 eV is attributed to vanadium d-d electronic transitions while the absorption edge above 3 eV is supposed to correspond to the onset of charge-transfer transitions.Comment: 7 figures, 8 page

    Neutralino Dark Matter from MSSM Flat Directions in light of WMAP Result

    Full text link
    The minimal supersymmetric standard model (MSSM) has a truly supersymmetric way to explain both the baryon asymmetry and cold dark matter in the present Universe, that is, ``Affleck-Dine baryo/DM-genesis.'' The associated late-time decay of Q-balls directly connects the origins of the baryon asymmetry and dark matter, and also predicts a specific nature of the LSP. In this paper, we investigate the prospects for indirect detection of these dark matter candidates observing high energy neutrino flux from the Sun, and hard positron flux from the halo. We also update the previous analysis of the direct detection in hep-ph/0205044 by implementing the recent result from WMAP satellite.Comment: 32 pages, including 40 figure

    Higgsino Dark Matter in a SUGRA Model with Nonuniversal Gaugino Masses

    Get PDF
    We study a specific SUGRA model with nonuniversal gaugino masses as an alternative to the minimal SUGRA model in the context of supersymmetric dark matter. The lightest supersymmetric particle in this model comes out to be a Higgsino dominated instead of a bino dominated lightest neutralino. The thermal relic density of this Higgsino dark matter is somewhat lower than the cosmologically favoured range, which means it may be only a subdominant component of the cold dark matter. Nonetheless, it predicts favourable rates of indirect detection, which can be seen in square-km size neutrino telescopes.Comment: Version to appear in Phys. Rev. D. A few references added in the bibliography and a comment added in Section 2. LaTex, 16 pages, 4 figure

    Quantum Magnetization Plateau in Spin-1 Triangular-Lattice Antiferromagnet Ba3_3NiSb2_2O9_9

    Full text link
    We report the results of magnetization and specific heat measurements on Ba3_3NiSb2_2O9_9, which is a quasi-two-dimensional spin-1 triangular-lattice antiferromagnet. We observed a nonclassical magnetization plateau at one-third of the saturation magnetization that is driven by spin frustration and quantum fluctuation. Exact diagonalization for a 21-site rhombic cluster was performed to analyze the magnetization process. Experimental and calculated results agree well.Comment: published in Journal of the Physical Society of Japan 80 (2011) 09370

    Multidimensional cosmological models: cosmological and astrophysical implications and constraints

    Full text link
    We investigate four-dimensional effective theories which are obtained by dimensional reduction of multidimensional cosmological models with factorizable geometry and consider the interaction between conformal excitations of the internal space (geometrical moduli excitations) and Abelian gauge fields. It is assumed that the internal space background can be stabilized by minima of an effective potential. The conformal excitations over such a background have the form of massive scalar fields (gravitational excitons) propagating in the external spacetime. We discuss cosmological and astrophysical implications of the interaction between gravexcitons and four-dimensional photons as well as constraints arising on multidimensional models of the type considered in our paper. In particular, we show that due to the experimental bounds on the variation of the fine structure constant, gravexcitons should decay before nucleosynthesis starts. For a successful nucleosynthesis the masses of the decaying gravexcitons should be m>10^4 GeV. Furthermore, we discuss the possible contribution of gravexcitons to UHECR. It is shown that, at energies of about 10^{20}eV, the decay length of gravexcitons with masses m>10^4 GeV is very small, but that for m <10^2 GeV it becomes much larger than the Greisen-Zatsepin-Kuzmin cut-off distance. Finally, we investigate the possibility for gravexciton-photon oscillations in strong magnetic fields of astrophysical objects. The corresponding estimates indicate that even the high magnetic field strengths of magnetars are not sufficient for an efficient and copious production of gravexcitons.Comment: 16 pages, LaTeX2e, minor changes, improved references, to appear in PR

    Confronting the Minimal Supersymmetric Standard Model with the Study of Scalar Leptons at Future Linear e+e- Colliders

    Get PDF
    Sleptons can easily be found at future linear e+e- colliders if kinematically accessible. Measurements of their masses and decay distributions would then determine MSSM parameters. This paper presents a detailed MC study of the production and decay of the lighter scalar tau lepton, stau1. We found that mstau1 and the left-right mixing angle of stau would be measured within an error of a few percent. tanbeta is determinable in some region of the parameter space through simultaneous studies of stau1-and selectron-pair production: the polarization measurement of the tau leptons from stau1 decays and the M1, mchi1 determination using selectron pair production and decay. We also point out the possibility to determine bino-selectron-e coupling through the measurement of the angular distribution of the selectron-pair production. The error on the coupling is expected to be comparable to its typical SUSY radiative correction, which is proportional to log(msquark/mslepton). The radiative correction affects M1 and tanbeta determination, necessitating the full 1-loop radiative correction to the selectron production processes. The implication of these measurements of the MSSM parameters on selecting models of the origin of supersymmetry breaking is also discussed.Comment: 35 pages. REVTEX(gzip compressed and uuencoded). Figure are not included. Text and 15 Figures are available at http://jlcux1.kek.jp/subg/susy/index-e.html#librar

    On Compound Poisson Processes Arising in Change-Point Type Statistical Models as Limiting Likelihood Ratios

    Get PDF
    Different change-point type models encountered in statistical inference for stochastic processes give rise to different limiting likelihood ratio processes. In a previous paper of one of the authors it was established that one of these likelihood ratios, which is an exponential functional of a two-sided Poisson process driven by some parameter, can be approximated (for sufficiently small values of the parameter) by another one, which is an exponential functional of a two-sided Brownian motion. In this paper we consider yet another likelihood ratio, which is the exponent of a two-sided compound Poisson process driven by some parameter. We establish, that similarly to the Poisson type one, the compound Poisson type likelihood ratio can be approximated by the Brownian type one for sufficiently small values of the parameter. We equally discuss the asymptotics for large values of the parameter and illustrate the results by numerical simulations

    Frustrated quantum Heisenberg ferrimagnetic chains

    Full text link
    We study the ground-state properties of weakly frustrated Heisenberg ferrimagnetic chains with nearest and next-nearest neighbor antiferromagnetic exchange interactions and two types of alternating sublattice spins S_1 > S_2, using 1/S spin-wave expansions, density-matrix renormalization group, and exact- diagonalization techniques. It is argued that the zero-point spin fluctuations completely destroy the classical commensurate- incommensurate continuous transition. Instead, the long-range ferrimagnetic state disappears through a discontinuous transition to a singlet state at a larger value of the frustration parameter. In the ferrimagnetic phase we find a disorder point marking the onset of incommensurate real-space short-range spin-spin correlations.Comment: 16 pages (LaTex 2.09), 6 eps figure

    Nonequilibrium Weak Processes in Kaon Condensation I --- Reaction rate for the thermal kaon process ---

    Full text link
    We investigate the thermal kaon process,in which kaons are thermally produced via nucleon-nucleon collisions.This process is relevant to nonequilibrium dynamics of kaon condensation inside neutron stars.The reaction rates for these processes are calculated, and their temperature and density dependences are compared with those of other reaction rates.It is shown that the thermal kaon process is dominant over other relevant weak reactions throughout the nonequilibrium process, such as the kaon-induced Urca and the modified Urca reactions, and may control the entire evolution of the kaon condensate. The characteristic role of the soft and hard kaons during the evolution is explained, and implications for astrophysical phenomena are briefly discussed.Comment: 31 pages,incl.10 eps figures,RevTe

    Low energy excitations and dynamic Dzyaloshinskii-Moriya interaction in α\alpha'-NaV2_2O5_5 studied by far infrared spectroscopy

    Full text link
    We have studied far infrared transmission spectra of alpha'-NaV2O5 between 3 and 200cm-1 in polarizations of incident light parallel to a, b, and c crystallographic axes in magnetic fields up to 33T. The triplet origin of an excitation at 65.4cm-1 is revealed by splitting in the magnetic field. The magnitude of the spin gap at low temperatures is found to be magnetic field independent at least up to 33T. All other infrared-active transitions appearing below Tc are ascribed to zone-folded phonons. Two different dynamic Dzyaloshinskii-Moriya (DM) mechanisms have been discovered that contribute to the oscillator strength of the otherwise forbidden singlet to triplet transition. 1. The strongest singlet to triplet transition is an electric dipole transition where the polarization of the incident light's electric field is parallel to the ladder rungs, and is allowed by the dynamic DM interaction created by a high frequency optical a-axis phonon. 2. In the incident light polarization perpendicular to the ladder planes an enhancement of the singlet to triplet transition is observed when the applied magnetic field shifts the singlet to triplet resonance frequency to match the 68cm-1 c-axis phonon energy. The origin of this mechanism is the dynamic DM interaction created by the 68cm-1 c-axis optical phonon. The strength of the dynamic DM is calculated for both mechanisms using the presented theory.Comment: 21 pages, 22 figures. Version 2 with replaced fig. 18 were labels had been los
    corecore