11,989 research outputs found

    Low temperature specific heat of La_{3}Pd_{4}Ge_{4} with U_{3}Ni_{4}Si_{4}-type structure

    Full text link
    Low temperature specific heat has been investigated in a novel ternary superconductor La_{3}Pd_{4}Ge_{4} with an U_{3}Ni_{4}Si_{4}-type structure consisting of the alternating BaAl_{4} (ThCr_{2}Si_{2})- and AlB2_{2}-type layers. A comparative study with the related ThCr_{2}Si_{2}-type superconductor LaPd_{2}Ge_{2}, one of the layers in La_{3}Pd_{4}Ge_{4}, is also presented. From the normal state specific heat, the Sommerfeld coefficient γn=27.0\gamma_{n} = 27.0 mJ/mol K^2 and the Debye temperature ΘD\Theta_{\rm D} = 256 K are derived for the La_{3}Pd_{4}Ge_{4}, while those for the LaPd_{2}Ge_{2} are γn=8.26\gamma_{n} =8.26 mJ/mol K^2 and ΘD\Theta_{\rm D} = 291 K. The La_{3}Pd_{4}Ge_{4} has moderately high electronic density of state at the Fermi level. Electronic contribution on the specific heat, CelC_{\rm el}, in each compound is well described by the BCS behavior, suggesting that both of the La_{3}Pd_{4}Ge_{4} and the LaPd_{2}Ge_{2} have fully opened isotropic gap in the superconducting state

    Melting the Color Glass Condensate at the LHC

    Full text link
    The charged particle multiplicity in central AA collisions and the production of heavy flavors in pA collisions at the LHC is predicted in the CGC framework.Comment: Presented at the Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007; 2 pages, 3 figure

    An analytic study towards instabilities of the glasma

    Full text link
    Strong longitudinal color flux fields will be created in the initial stage of high-energy nuclear collisions. We investigate analytically time evolution of such boost-invariant color fields from Abelian-like initial conditions, and next examine stability of the boost-invariant configurations against rapidity dependent fluctuations. We find that the magnetic background field has an instability induced by the lowest Landau level whose amplitude grows exponentially. For the electric background field there is no apparent instability although pair creations due to the Schwinger mechanism should be involved.Comment: 4p, 3figs; poster contribution to QM200

    Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB2 tapes

    Full text link
    We fabricated in situ powder-in-tube processed MgB2/Fe tapes using aromatic hydrocarbon of benzene, naphthalene, and thiophene as additives, and investigated the superconducting properties. We found that these aromatic hydrocarbons were very effective for increasing the Jc values. The Jc values of 20mol% benzene-added tapes reached 130A/mm2 at 4.2K and 10T. This value was almost comparable to that of 10mol% SiC-added tapes and about four times higher than that of tapes with no additions. Microstructure analyses suggest that this Jc enhancement is due to both the substitution of carbon for boron in MgB2 and the smaller MgB2 grain size.Comment: 6 pages, 4 figure

    Remarks on the Collective Quantization of the SU(2) Skyrme Model

    Full text link
    We point out the question of ordering momentum operator in the canonical \break quantization of the SU(2) Skyrme Model. Thus, we suggest a new definition for the momentum operator that may solve the infrared problem that appears when we try to minimize the Quantum Hamiltonian.Comment: 8 pages, plain tex, IF/UFRJ/9

    Fabrication of high performance MgB2 wires by an internal Mg diffusion process

    Full text link
    We succeeded in the fabrication of high-Jc MgB2/Fe wires applying the internal Mg diffusion (IMD) process with pure Mg core and SiC addition. A pure Mg rod with 2 mm diameter was placed at the center of a Fe tube, and the space between Mg and Fe tube was filled with B powder or the powder mixture of B-(5mol%)SiC. The composite was cold worked into 1.2mm diameter wire and finally heat treated at temperatures above the melting point of Mg(~650oC). During the heat treatment liquid Mg infiltrated into B layer and reacted with B to form MgB2. X-ray diffraction analysis indicated that the major phase in the reacted layer is MgB2. SEM analysis shows that the density of MgB2 layer is higher than that of usual powder-in-tube(PIT) processed wires. The wires with 5mol% SiC addition heat treated at 670oC showed Jc values higher than 105A/cm2 in 8T and 41,000A/cm2 in 10T at 4.2K. These values are much higher than those of usual PIT processed wires even compared to the ones with SiC addition. Higher density of MgB2 layer obtained by the diffusion reaction is the major cause of this excellent Jc values.Comment: 7page, 6figure

    Heavy flavor production in pA collisions

    Full text link
    Heavy quark production in high-energy proton-nucleus (pA) collisions is described in the framework of the Color Glass Condensate. kT factorization is broken even at leading order albeit a more general factorization in pA holds at this order in terms of 2, 3 and 4 point correlators of Wilson lines in the nuclear target. The x-evolution of these correlators is computed in the large A and large N mean field limit of the Balitsky-Kovchegov equation. We show results for heavy quark production at RHIC and LHC energies.Comment: Talk given at QM2006. 4

    Thermal conductivity of the thermoelectric layered cobalt oxides measured by the Harman method

    Full text link
    In-plane thermal conductivity of the thermoelectric layered cobalt oxides has been measured using the Harman method, in which thermal conductivity is obtained from temperature gradient induced by applied current. We have found that the charge reservoir block (the block other than the CoO2_2 block) dominates the thermal conduction, where a nano-block integration concept is effective for material design. We have further found that the thermal conductivity shows a small but finite in-plane anisotropy between aa and bb axes, which can be ascribed to the misfit structure.Comment: 4 pages, 4 figures, J. Appl. Phys. (scheduled on July 1, 2004

    Optical Conductivity of the Trellis-Lattice t-J Model: Charge Fluctuations in NaV_2O_5

    Full text link
    Optical conductivity of the trellis lattice t-J model at quarter filling is calculated by an exact-diagonalization technique on small clusters, whereby the valence state of V ions of NaV_2O_5 is considered. We show that the experimental features at \sim 1 eV, including peak positions, presence of shoulders, and anisotropic spectral weight, can be reproduced in reasonable range of parameter values, only by assuming that the system is in the charge disproportionated ground state. Possible reconciliation with experimental data suggesting the presence of uniform ladders at T>T_c is discussed.Comment: 4 pages, 4 gif figures. Minor revisions have been made. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]
    • …
    corecore