8,225 research outputs found

    Quintessence, scalar-tensor theories and non-Newtonian gravity

    Get PDF
    We discuss some of the issues which we encounter when we try to invoke the scalar-tensor theories of gravitation as a theoretical basis of quintessence. One of the advantages of appealing to these theories is that they allow us to implement the scenario of a ``decaying cosmological constant,'' which offers a reasonable understanding of why the observed upper bound of the cosmological constant is smaller than the theoretically natural value by as much as 120 orders of magnitude. In this context, the scalar field can be a candidate of quintessence in a broader sense. We find, however, a serious drawback in the prototype Brans-Dicke model with Λ\Lambda added; a static universe in the physical conformal frame which is chosen to have constant particle masses. We propose a remedy by modifying the matter coupling of the scalar field taking advantage of scale invariance and its breakdown through quantum anomaly. By combining this with a conjecture on another cosmological constant problem coming from the vacuum energy of matter fields, we expect a possible link between quintessence and non-Newtonian gravity featuring violation of Weak Equivalence Principle and intermediate force range, likely within the experimental constraints. A new prediction is also offered on the time-variability of the gravitational constant.Comment: 12 pages LaTex including 1 eps figur

    Super-soft symmetry energy encountering non-Newtonian gravity in neutron stars

    Full text link
    Considering the non-Newtonian gravity proposed in the grand unification theories, we show that the stability and observed global properties of neutron stars can not rule out the super-soft nuclear symmetry energies at supra-saturation densities. The degree of possible violation of the Inverse-Square-Law of gravity in neutron stars is estimated using an Equation of State (EOS) of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.Comment: Version accepted by Physical Review Letter

    Attractor Universe in the Scalar-Tensor Theory of Gravitation

    Full text link
    In the scalar-tensor theory of gravitation it seems nontrivial to establish if solutions of the cosmological equations in the presence of a cosmological constant behave as attractors independently of the initial values. We develop a general formulation in terms of two-dimensional phase space. We show that there are two kinds of fixed points, one of which is an attractor depending on the coupling constant and equation of state. In the case with a power-law potential in the Jordan frame, we also find new type of inflation caused by the coupling to the matter fluid

    Boson stars in massive dilatonic gravity

    Get PDF
    We study equilibrium configurations of boson stars in the framework of a class scalar-tensor theories of gravity with massive gravitational scalar (dilaton). In particular we investigate the influence of the mass of the dilaton on the boson star structure. We find that the masses of the boson stars in presence of dilaton are close to those in general relativity and they are sensitive to the ratio of the boson mass to the dilaton mass within a typical few percent. It turns out also that the boson star structure is mainly sensitive to the mass term of the dilaton potential rather to the exact form of the potential.Comment: 9 pages, latex, 9 figures, one figure dropped, new comments added, new references added, typos correcte

    On the way from matter-dominated era to dark energy universe

    Get PDF
    We develop the general program of the unification of matter-dominated era with acceleration epoch for scalar-tensor theory or dark fluid. The general reconstruction of single scalar-tensor theory is fulfilled. The explicit form of scalar potential for which the theory admits matter-dominated era, transition to acceleration and (asymptotically deSitter) acceleration epoch consistent with WMAP data is found. The interrelation of the epochs of deceleration-acceleration transition and matter dominance-dark energy transition for dark fluids with general EOS is investigated. We give several examples of such models with explicit EOS (using redshift parametrization) where matter-dark energy domination transition may precede the deceleration-acceleration transition. As some by-product, the reconstruction scheme is applied to scalar-tensor theory to define the scalar potentials which may produce the dark matter effect. The obtained modification of Newton potential may explain the rotation curves of galaxies.Comment: LaTeX 12 pages, 1 figure, extended version to appear in PR

    A two-scalar model for a small but nonzero cosmological constant

    Get PDF
    We revisit a model of the two-scalar system proposed previously for understanding a small but nonzero cosmological constant. The model provides solutions of the scalar-fields energy ρs\rho_s which behaves truly constant for a limited time interval rather than in the way of tracker- or scaling-type variations. This causes a mini-inflation, as indicated by recent observations. As another novel feature, ρs\rho_s and the ordinary matter density ρm\rho_m fall off always side by side, but interlacing, also like (time)2^{-2} as an overall behavior in conformity with the scenario of a decaying cosmological constant. A mini-inflation occurs whenever ρs\rho_s overtakes ρm\rho_m, which may happen more than once, shedding a new light on the coincidence problem. We present a new example of the solution, and offer an intuitive interpretation of the mechanism of the nonlinear dynamics. We also discuss a chaos-like nature of the solution.Comment: 9 pages plus 7 figure

    Elasticity of smectic liquid crystals with focal conic domains

    Full text link
    We study the elastic properties of thermotropic smectic liquid crystals with focal conic domains (FCDs). After the application of the controlled preshear at different temperatures, we independently measured the shear modulus G' and the FCD size L. We find out that these quantities are related by the scaling relation G' ~ \gamma_{eff}/L where \gamma_{eff} is the effective surface tension of the FCDs. The experimentally obtained value of \gamma_{\rm eff} shows the same scaling as the effective surface tension of the layered systems \sqrt{KB} where K and B are the bending modulus and the layer compression modulus, respectively. The similarity of this scaling relation to that of the surfactant onion phase suggests an universal rheological behavior of the layered systems with defects.Comment: 14 pages, 7 figures, accepted for publication in JPC

    CMB Constraint on Radion Evolution in the Brane World Scenario

    Full text link
    In many versions of brane model, the modulus field of extra dimensions, the radion, could have cosmological evolution, which induces variation of the Higgs vacuum expectation value, , resulting in cosmological variation of the electron mass $m_e$. The formation of Cosmic Microwave Background (CMB) anisotropies is thus affected, causing changes both in the peaks positions and amplitudes in the CMB power spectra. Using the three-year Wilkinson Microwave Anisotropies Probe (WMAP) CMB data, with the Hubble parameter $H_0$ fixed to be the Hubble Space Telescope (HST) result 72 km s$^{-1}$ Mpc$^{-1}$, we obtain a constraint on $\rho$, the ratio of the value of at CMB recombination to its present value, to be [0.97, 1.02].Comment: 7 pages, 6 figures, minor changes of format to conform with PRD forma
    corecore