1,619 research outputs found

    Temperature dependence of the nonlocal voltage in an Fe/GaAs electrical spin injection device

    Full text link
    The nonlocal spin resistance is measured as a function of temperature in a Fe/GaAs spin-injection device. For nonannealed samples that show minority-spin injection, the spin resistance is observed up to room temperature and decays exponentially with temperature at a rate of 0.018\,K−1^{-1}. Post-growth annealing at 440\,K increases the spin signal at low temperatures, but the decay rate also increases to 0.030\,K−1^{-1}. From measurements of the diffusion constant and the spin lifetime in the GaAs channel, we conclude that sample annealing modifies the temperature dependence of the spin transfer efficiency at injection and detection contacts. Surprisingly, the spin transfer efficiency increases in samples that exhibit minority-spin injection.Comment: 10 pages, 4 figure

    In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography

    Full text link
    A single-electron transistor has been realized in a Ga[Al]As heterostructure by oxidizing lines in the GaAs cap layer with an atomic force microscope. The oxide lines define the boundaries of the quantum dot, the in-plane gate electrodes, and the contacts of the dot to source and drain. Both the number of electrons in the dot as well as its coupling to the leads can be tuned with an additional, homogeneous top gate electrode. Pronounced Coulomb blockade oscillations are observed as a function of voltages applied to different gates. We find that, for positive top-gate voltages, the lithographic pattern is transferred with high accuracy to the electron gas. Furthermore, the dot shape does not change significantly when in-plane voltages are tuned.Comment: 4 pages, 3 figure

    Transport through the intertube link between two parallel carbon nanotubes

    Full text link
    Quantum transport through the junction between two metallic carbon nanotubes connected by intertube links has been studied within the TB method and Landauer formula. It is found that the conductance oscillates with both of the coupling strength and length. The corresponding local density of states (LDOS) is clearly shown and can be used to explain the reason why there are such kinds of oscillations of the conductances, which should be noted in the design of nanotube-based devices.Comment: 6 pages, 4 figure

    Frequency-dependent complex conductivity of an organic thin-film transistor

    Full text link
    We measure the complex impedance between source/drain electrodes and the gate electrode of a pentacene thin-film transistor (TFT) at frequencies 50 Hz < omega/2pi < 20 kHz. Modeling the TFT as a distributed RC network (RC transmission line), we find that the data cannot be explained by a model including only a real, frequency-independent sheet conductivity. Instead, we use the RC transmission line model to extract the frequency-dependent complex sheet conductivity sigma(omega) = sigma'(omega) + jsigma"(omega) of the pentacene film. At high frequencies, sigma(omega) increases with frequency, sigma'(omega) and sigma"(omega) become similar in magnitude, and the on/off ratio is significantly reduced.Comment: 13 pages, 4 figure

    Wood ash treatment affects seasonal N fluctuations in needles of adult Picea abies trees: a 15N-tracer study

    Get PDF
    A 15N-tracer experiment was carried out in a stand of adult spruce trees [Picea abies (L.) Karst.] located on the Swiss Plateau in order to investigate the effects of wood ash treatment on seasonal nitrogen fluctuations in fine roots and needles. Treatments included irrigation (W), liquid fertilization (LF) and wood ash (A) application. 15N fluctuation in fine roots and current to 3-year-old needles was studied after one 15N pulse for 2consecutive years (1999, 2000). 15N tracer was rapidly incorporated into the fine roots of adult trees, and δ15N values reached similar levels in all treatments 2months after the pulse. In the needles, the largest increase in δ15N was observed in those of the current year. Following the initial peak during spring growth, δ15N values in needles of control trees showed an oscillating pattern through the season. This oscillation is attributed to the increased use of internal N sources, as soon as the roots can no longer meet the increased N demand during the sprouting phase. However, W-, LF- and A-treated trees no longer showed the oscillation in δ15N. Additional water (W and LF) as well as fertilizer (A and LF) may have induced shifts in the microbial flora, thus increasing the unlabelled N release from the soil. The strongest dampening was observed for the A treatment, indicating sufficient N availability from the soil, and making intensive use of the internal N sources unnecessary. Treatment with wood ash thus resulted in a similar fertilizer response to liquid fertilizatio
    • …
    corecore