687 research outputs found

    The two gap transitions in Ge1x_{1-x}Snx_x: effect of non-substitutional complex defects

    Full text link
    The existence of non-substitutional β\beta-Sn defects in Ge1x_{1-x}Snx_{x} was confirmed by emission channeling experiments [Decoster et al., Phys. Rev. B 81, 155204 (2010)], which established that although most Sn enters substitutionally (α\alpha-Sn) in the Ge lattice, a second significant fraction corresponds to the Sn-vacancy defect complex in the split-vacancy configuration ( β\beta-Sn ), in agreement with our previous theoretical study [Ventura et al., Phys. Rev. B 79, 155202 (2009)]. Here, we present our electronic structure calculation for Ge1x_{1-x}Snx_{x}, including substitutional α\alpha-Sn as well as non-substitutional β\beta-Sn defects. To include the presence of non-substitutional complex defects in the electronic structure calculation for this multi-orbital alloy problem, we extended the approach for the purely substitutional alloy by Jenkins and Dow [Jenkins and Dow, Phys. Rev. B 36, 7994 (1987)]. We employed an effective substitutional two-site cluster equivalent to the real non-substitutional β\beta-Sn defect, which was determined by a Green's functions calculation. We then calculated the electronic structure of the effective alloy purely in terms of substitutional defects, embedding the effective substitutional clusters in the lattice. Our results describe the two transitions of the fundamental gap of Ge1x_{1-x}Snx_{x} as a function of the total Sn-concentration: namely from an indirect to a direct gap, first, and the metallization transition at higher xx. They also highlight the role of β\beta-Sn in the reduction of the concentration range which corresponds to the direct-gap phase of this alloy, of interest for optoelectronics applications.Comment: 11 pages, 9 Figure

    Measurement of Antenna Surfaces from In- and Out-Of-Focus Beam Maps using Astronomical Sources

    Get PDF
    We present a technique for the accurate estimation of large-scale errors in an antenna surface using astronomical sources and detectors. The technique requires several out-of-focus images of a compact source and the signal-to-noise ratio needs to be good but not unreasonably high. For a given pattern of surface errors, the expected form of such images can be calculated directly. We show that it is possible to solve the inverse problem of finding the surface errors from the images in a stable manner using standard numerical techniques. To do this we describe the surface error as a linear combination of a suitable set of basis functions (we use Zernike polynomials). We present simulations illustrating the technique and in particular we investigate the effects of receiver noise and pointing errors. Measurements of the 15-m James Clerk Maxwell telescope made using this technique are presented as an example. The key result is that good measurements of errors on large spatial scales can be obtained if the input images have a signal-to-noise ratio of order 100 or more. The important advantage of this technique over transmitter-based holography is that it allows measurements at arbitrary elevation angles, so allowing one to characterise the large scale deformations in an antenna as a function of elevation.Comment: 6 pages, 5 figures (accepted by Astronomy & Astrophysics

    New Critical Compilations of Atomic Transition Probabilities for Neutral and Singly Ionized Carbon, Nitrogen, and Iron

    Get PDF
    We have undertaken new critical assessments and tabulations of the transition probabilities of important lines of these spectra. For Fe I and Fe II, we have carried out a complete re-assessment and update, and we have relied almost exclusively on the literature of the last 15 years. Our updates for C I, C II and N I, N II primarily address the persistent lower transitions as well as a greatly expanded number of forbidden lines (M1, M2, and E2). For these transitions, sophisticated multiconfiguration Hartree-Fock (MCHF) calculations have been recently carried out, which have yielded data considerably improved and often appreciably different from our 1996 NIST compilation

    Non-substitutional single-atom defects in the Ge_(1-x)Sn_x alloy

    Full text link
    Ge_(1-x)Sn_x alloys have proved difficult to form at large x, contrary to what happens with other group IV semiconductor combinations. However, at low x they are typical examples of well-behaved substitutional compounds, which is desirable for harnessing the electronic properties of narrow band semiconductors. In this paper, we propose the appearance of another kind of single-site defect (βSn\beta-Sn), consisting of a single Sn atom in the center of a Ge divacancy, that may account for these facts. Accordingly, we examine the electronic and structural properties of these alloys by performing extensive numerical ab-initio calculations around local defects. The results show that the environment of the β\beta defect relaxes towards a cubic octahedral configuration, facilitating the nucleation of metallic white tin and its segregation, as found in amorphous samples. Using the information stemming from these local defect calculations, we built a simple statistical model to investigate at which concentration these β\beta defects can be formed in thermal equilibrium. These results agree remarkably well with experimental findings, concerning the critical concentration above which the homogeneous alloys cannot be formed at room temperature. Our model also predicts the observed fact that at lower temperature the critical concentration increases. We also performed single site effective-field calculations of the electronic structure, which further support our hypothesis.Comment: 12 pages, 1 table, 16 figure

    The effect of Coulomb interaction at ferromagnetic-paramagnetic metallic perovskite junctions

    Full text link
    We study the effect of Coulomb interactions in transition metal oxides junctions. In this paper we analyze charge transfer at the interface of a three layer ferromagnetic-paramagnetic-ferromagnetic metallic oxide system. We choose a charge model considering a few atomic planes within each layer and obtain results for the magnetic coupling between the ferromagnetic layers. For large number of planes in the paramagnetic spacer we find that the coupling oscillates with the same period as in RKKY but the amplitude is sensitive to the Coulomb energy. At small spacer thickness however, large differences may appear as function of : the number of electrons per atom in the ferromagnetics and paramagnetics materials, the dielectric constant at each component, and the charge defects at the interface plane emphasizing the effects of charge transfer.Comment: tex file and 7 figure

    Electrorotation of a pair of spherical particles

    Full text link
    We present a theoretical study of electrorotation (ER) of two spherical particles under the action of a rotating electric field. When the two particles approach and finally touch, the mutual polarization interaction between the particles leads to a change in the dipole moment of the individual particle and hence the ER spectrum, as compared to that of the well-separated particles. The mutual polarization effects are captured by the method of multiple images. From the theoretical analysis, we find that the mutual polarization effects can change the characteristic frequency at which the maximum angular velocity of electrorotation occurs. The numerical results can be understood in the spectral representation theory.Comment: Minor revisions; accepted by Phys. Rev.

    Central Stars of Planetary Nebulae in the Large Magellanic Cloud: A Far-UV Spectroscopic Analysis

    Full text link
    We observed seven central stars of planetary nebulae (CSPN) in the Large Magellanic Cloud (LMC) with the Far Ultraviolet Spectroscopic Explorer (FUSE), and performed a model-based analysis of these spectra in conjunction with Hubble Space Telescope (HST) spectra in the UV and optical range to determine the stellar and nebular parameters. Most of the objects show wind features, and they have effective temperatures ranging from 38 to 60 kK with mass-loss rates of ~= 5x10^-8 Msun/yr. Five of the objects have typical LMC abundances. One object (SMP LMC 61) is a [WC4] star, and we fit its spectra with He/C/O-rich abundances typical of the [WC] class, and find its atmosphere to be iron-deficient. Most objects have very hot (T ~> 2000 K) molecular hydrogen in their nebulae, which may indicate a shocked environment. One of these (SMP LMC 62) also displays OVI 1032-38 nebular emission lines, rarely observed in PN.Comment: 53 pages, 15 figures (11 color). Accepted for publication in Ap

    Keck Hires Observations of the QSO First J104459.6+365605: Evidence for a Large Scale Outflow

    Full text link
    This paper presents an analysis of a Keck HIRES spectrum of the QSO FIRST J104459.6+365605. The line of sight towards the QSO contains two clusters of outflowing clouds that give rise to broad blue shifted absorption lines. The outflow velocities of the clouds range from -200 to -1200 km/s and from -3400 to -5200 km/s, respectively. The width of the individual absorption lines ranges from 50 to more than 1000 km/s. The most prominent absorption lines are those of Mg II, Mg I, and Fe II. The low ionization absorption lines occur at the same velocities as the most saturated Mg II lines, showing that the Fe II, Mg I and Mg II line forming regions must be closely associated. Many absorption lines from excited states of Fe II are present, allowing a determination of the population of several low lying energy levels. From this we determine an electron density in the Fe II line forming regions of 4000 per cubic cm. Modelling the ionization state of the absorbing gas with this value of the electron density as a constraint, we find that the distance between the Fe II and Mg I line forming region and the continuum source is of order 700 parsec. From the correspondence in velocity between the Fe II, Mg I and Mg II lines we infer that the Mg II lines must be formed at the same distance. The Mg II absorption fulfills the criteria for Broad Absorption Lines defined by Weymann et al. (1991). This large distance is surprising, since BALs are generally thought to be formed in outflows at a much smaller distance from the nucleus.Comment: 34 pages, 11 figures. Accepted by The Astrophysical Journa

    Theory of ac electrokinetic behavior of spheroidal cell suspensions with an intrinsic dispersion

    Full text link
    The dielectric dispersion, dielectrophoretic (DEP) and electrorotational (ER) spectra of spheroidal biological cell suspensions with an intrinsic dispersion in the constituent dielectric constants are investigated. By means of the spectral representation method, we express analytically the characteristic frequencies and dispersion strengths both for the effective dielectric constant and the Clausius-Mossotti factor (CMF). We identify four and six characteristic frequencies for the effective dielectric spectra and CMF respectively, all of them being dependent on the depolarization factor (or the cell shape). The analytical results allow us to examine the effects of the cell shape, the dispersion strength and the intrinsic frequency on the dielectric dispersion, DEP and ER spectra. Furthermore, we include the local-field effects due to the mutual interactions between cells in a dense suspension, and study the dependence of co-field or anti-field dispersion peaks on the volume fractions.Comment: accepted by Phys. Rev.
    corecore