111 research outputs found
DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments
Simultaneous Localization and Mapping (SLAM) is considered to be a
fundamental capability for intelligent mobile robots. Over the past decades,
many impressed SLAM systems have been developed and achieved good performance
under certain circumstances. However, some problems are still not well solved,
for example, how to tackle the moving objects in the dynamic environments, how
to make the robots truly understand the surroundings and accomplish advanced
tasks. In this paper, a robust semantic visual SLAM towards dynamic
environments named DS-SLAM is proposed. Five threads run in parallel in
DS-SLAM: tracking, semantic segmentation, local mapping, loop closing, and
dense semantic map creation. DS-SLAM combines semantic segmentation network
with moving consistency check method to reduce the impact of dynamic objects,
and thus the localization accuracy is highly improved in dynamic environments.
Meanwhile, a dense semantic octo-tree map is produced, which could be employed
for high-level tasks. We conduct experiments both on TUM RGB-D dataset and in
the real-world environment. The results demonstrate the absolute trajectory
accuracy in DS-SLAM can be improved by one order of magnitude compared with
ORB-SLAM2. It is one of the state-of-the-art SLAM systems in high-dynamic
environments. Now the code is available at our github:
https://github.com/ivipsourcecode/DS-SLAMComment: 7 pages, accepted at the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2018). Now the code is available at our
github: https://github.com/ivipsourcecode/DS-SLA
Effects of microfractures on permeability in carbonate rocks based on digital core technology
Carbonate reservoirs develop many different types of microfractures that play an important role in increasing the effective reservoir space and permeability. Thus, the qualitative and quantitative characterisation of the effect of microfractures on permeability in rocks is essential. In this study, a quantitative method for evaluating the impact of different microfracture parameters on carbonate rock permeability was proposed. Lattice Boltzmann simulations were carried on two carbonate digital cores with different types of artificially added microfractures. Based on the simulation results, a partial least squares regression analysis was used to investigate the impact of microfractures on the permeability of the cores. Increases in the fracture length, aperture, and density were found to linearly increase the permeability of the carbonate rocks, and as the fracture length increased to penetrate the whole core, an exponential increase in permeability was observed. Additionally, the effect of microfractures on the digital core permeability was more significant in cores with high permeability compared to that in low-permeability cores. Although both fractures and matrix permeability contribute to the permeability of the digital cores, the former were found to have a greater effect on the permeability.Cited as: Liu, C., Zhang, L., Li, Y., Liu, F., Martyushev, D. A., Yang, Y. Effects of microfractures on permeability in carbonate rocks based on digital core technology. Advances in Geo-Energy Research, 2022, 6(1): 86-90. https://doi.org/10.46690/ager.2022.01.0
Growth inhibition of mouse embryonic stem (ES) cells on the feeders from domestic animals
Mouse embryonic stem cells (mESCs) can be propagated in vitro on the feeders of mouse embryonic fibroblasts. In this study, we found growth inhibition of mESCs cultured on embryonic fibroblast feeders derived from different livestock animals. Under the same condition, mESCs derived from mouse embryonic fibroblast feeders were seen on the mass-like colonies and round or oval images, and more significant growth in the total number of colonies (p<0.05) and viable cells in the colonies (p<0.01) than that from goat embryonic fibroblast feeders, and viable cells in the colonies (p<0.05) than that from porcine embryonic fibroblast feeders. The feeders from bovine embryonic fibroblasts also reduced viable cells in the colonies, but were not significantly different in the total number of colonies and viable cells in the colonies with mouse embryonic fibroblast feeders. mESCs on the different embryonic fibroblast feeders were expressed as stem cell-specific markers Oct 4 and stage-specific embryonic antigen 1 (SSEA 1). Here, our results indicate that the feeders from goat, porcine and bovine embryonic fibroblasts inhibit the proliferation of mESCs.Key words: Domestic animals, feeders, mouse embryonic stem cells (mESCs), growth
Influences of nitrogen input forms and levels on phosphorus availability in karst grassland soils
The availability of soil phosphorus (P), a crucial nutrient influencing plant productivity and ecosystem function, is impacted by continuously increasing nitrogen (N) enrichment, which changes the soil P cycle. The effect of varying forms of N input on soil P dynamics in P-limited karst grassland ecosystems remains unclear. To address this knowledge gap, we conducted a greenhouse experiment to explore the effects of various forms of N addition [Ca(NO3)2, NH4Cl, NH4NO3, Urea] on soil P fractions in these ecosystems, applying two levels (N1: 50 mg N kg−1soil, N2: 100 mg N kg−1soil) of N input in two soils (yellow soil, limestone soil). Results indicated that P fractions in both soil types were significantly affected by N additions, with yellow soil demonstrating a higher sensitivity to these additions, and this effect was strongly modulated by the form and level of N added. High N addition, rather than low N, significantly affect the P fractions in both soil types. Specially, except for Ca(NO3)2, high N addition significantly increased the available P in both soils, following the order: Urea and NH4NO3 > NH4Cl > Ca(NO3)2, and decreased NaHCO3-Pi in both soils. High N addition also significantly reduced NaOH-Po and C.HCl-Po fractions in yellow soil. Additionally, the response of root biomass and alkaline phosphatase activity in both soils to N input paralleled the trends observed in the available P fractions. Notably, changes in soil available P were strongly correlated with plant root biomass and soil alkaline phosphatase activity. Our study highlights that the N addition form significantly influences soil P availability, which is closely tied to plant root biomass and alkaline phosphatase activity. This finding underscores the importance of considering N input form to boost soil fertility and promote sustainable agriculture
Decoupling of nutrient stoichiometry in Suaeda glauca (Bunge) senesced leaves under salt treatment
The stoichiometry of senesced leaves is pivotal in nutrient cycling and can be significantly influenced by soil salinization, a rising global issue threatening the functionality of ecosystems. However, the impacts of soil salinization on senesced leaf stoichiometry are not fully understood. In this study, we conducted a pot experiment with varying soil salt concentrations to examine their influence on the concentrations and stoichiometric ratios of nitrogen (N), phosphorus (P), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), and zinc (Zn) in the senesced leaves of Suaeda glauca (Bunge). Compared to the control group, salt treatments significantly enhanced Na concentration while diminishing the concentrations of K, Ca, Mg, Zn, N, and P. Interestingly, as salinity levels escalated, N concentration maintained stability, whereas P concentration exhibited an increasing trend. Moreover, K, Ca, and Mg significantly declined as salt levels rose. Salt treatments brought about significant changes in stoichiometric ratios, with the N:P, K:Na, N:Na, N:Mg, and Ca : Mg ratios dropping and the N:Ca and N:K ratios rising, illustrating the varying nutrient coupling cycles under different salt conditions. These findings shed light on the plasticity of stoichiometric traits in S. glauca senesced leaves in response to soil salinization shifts, which could potentially offer insights into nutrient cycling reactions to soil salinization
Characterization of Bovine Induced Pluripotent Stem Cells by Lentiviral Transduction of Reprogramming Factor Fusion Proteins
Pluripotent stem cells from domesticated animals have potential applications in transgenic breeding. Here, we describe induced pluripotent stem (iPS) cells derived from bovine fetal fibroblasts by lentiviral transduction of Oct4, Sox2, Klf4 and c-Myc defined-factor fusion proteins. Bovine iPS cells showed typical colony morphology, normal karyotypes, stained positively for alkaline phosphatase (AP) and expressed Oct4, Nanog and SSEA1. The CpG in the promoter regions of Oct4 and Nanog were highly unmethylated in bovine iPS cells compared to the fibroblasts. The cells were able to differentiate into cell types of all three germ layers in vitro and in vivo. In addition, these cells were induced into female germ cells under defined culture conditions and expressed early and late female germ cell-specific genes Vasa, Dazl, Gdf9, Nobox, Zp2, and Zp3. Our data suggest that bovine iPS cells were generated from bovine fetal fibroblasts with defined-factor fusion proteins mediated by lentivirus and have potential applications in bovine transgenic breeding and gene-modified animals
Association between sleep disturbance and mental health of healthcare workers: A systematic review and meta-analysis
ObjectivesSleep disturbance and mental health are challenges for healthcare workers (HCWs). Especially during the COVID-19 pandemic, they experienced more severe sleep and mental health problems. However, the association between sleep disturbance and the mental health of HCWs is still controversial. This study aimed to systematically review the relationship by conducting a systematic review and meta-analysis.MethodTwo researchers retrieved the literature from Web of Science, PubMed, EMBASE, CINAHL, Psyclnfo, and Cochrane Library from the establishment of the databases until November 20, 2021. We used the New Castle-Ottawa Scale (NOS) and Agency for Healthcare Research and Quality (AHRQ) to evaluate the risk of bias in prospective research and cross-sectional research, respectively. The major exposure was HCWs’ sleep disturbance, and the major outcome was mental health. The correlation coefficients (r), regression coefficients (β) and odds ratios (OR) of the included studies were integrated.ResultFifty-nine studies were included for qualitative analysis, of which 30 studies could be combined and entered into quantitative analysis. There were 23 studies during the COVID-19 pandemic among the 59 included studies. The results of the meta-analysis showed that the correlation coefficient between sleep disturbance and mental health was 0.43 (95% CI: 0.39–0.47). HCWs with sleep disturbance had a 3.74 (95% CI: 2.76–5.07) times higher risk of mental health problems than those without sleep disturbance. The correlation coefficient during the COVID-19 epidemic was 0.45 (95% CI: 0.37–0.53), while it was 0.40 (95% CI: 0.36–0.44) during the non-epidemic period. Subgroup analysis compared the OR results in epidemic and non-epidemic periods of COVID-19, which were 4.48 (95% CI: 2.75–5.07) and 3.74 (95% CI: 2.74–7.32), respectively.ConclusionSleep disturbance and mental health problems were positively correlated among HCWs. Particularly in the COVID-19 pandemic, more attention should be given to this issue
Screening and evaluating of long noncoding RNAs in the puberty of goats
GO analysis of predicted targets of lncRNAs in trans. (XLS 1551Â kb
- …