2 research outputs found

    QUANTIFICATION OF FACTORS GOVERNING DRUG RELEASE KINETICS FROM NANOPARTICLES: A COMBINED EXPERIMENTAL AND MECHANISTIC MODELING APPROACH

    Get PDF
    Advancements in nanoparticle drug delivery of anticancer agents require mathematical models capable of predicting in vivo formulation performance from in vitro characterization studies. Such models must identify and incorporate the physicochemical properties of the therapeutic agent and nanoparticle driving in vivo drug release. This work identifies these factors for two nanoparticle formulations of anticancer agents using an approach which develops mechanistic mathematical models in conjunction with experimental studies. A non-sink ultrafiltration method was developed to monitor liposomal release kinetics of the anticancer agent topotecan. Mathematical modeling allowed simultaneous determination of drug permeability and interfacial binding to the bilayer from release data. This method also quantified the effects of topotecan dimerization and surface potential on total amount of drug released from these liposomal formulations. The pH-sensitive release of topotecan from unilamellar vesicles was subsequently evaluated with this method. A mechanistic model identified three permeable species in which the zwitterionic lactone form of topotecan was the most permeable. Ring-closing kinetics of topotecan from its carboxylate to lactone form were found to be rate-limiting for topotecan drug release in the neutral pH region. Models were also developed to non-invasively analyze release kinetics of actively-loaded liposomal formulations of topotecan in vivo. The fluorescence excitation spectra of released topotecan were used to observe release kinetics in aqueous solution and human plasma. Simulations of the intravesicular pH in the various release media indicated accelerated release in plasma was a consequence of increased intravesicular pH due to ammonia levels in the plasma instead of alterations in bilayer integrity. Further studies were performed to understand the roles of dimerization, ion-pairing, and precipitation on loading and release kinetics obtained from actively-loaded topotecan. Extension of this type of modeling for other types of nanoparticles was illustrated with doxorubicin-conjugated polymeric micelles. Mathematical modeling of experimental studies monitoring doxorubicin release identified conjugation stability during storage, hydrazone hydrolysis kinetics, and unconjugated doxorubicin partitioning affected micellar doxorubicin release. This work identifies several of the key parameters governing drug release from these liposomal and micellar nanoparticles and lays the framework for future development of in vivo release models for these formulations

    An \u3cem\u3ein Vitro\u3c/em\u3e Assessment of Liposomal Topotecan Simulating Metronomic Chemotherapy in Combination with Radiation in Tumor-Endothelial Spheroids

    Get PDF
    Low dose metronomic chemotherapy (LDMC) refers to prolonged administration of low dose chemotherapy designed to minimize toxicity and target the tumor endothelium, causing tumor growth inhibition. Topotecan (TPT) when administered at its maximum tolerated dose (MTD) is often associated with systemic hematological toxicities. Liposomal encapsulation of TPT enhances efficacy by shielding it from systemic clearance, allowing greater uptake and extended tissue exposure in tumors. Extended release of TPT from liposomal formulations also has the potential to mimic metronomic therapies with fewer treatments. Here we investigate potential toxicities of equivalent doses of free and actively loaded liposomal TPT (LTPT) and compare them to a fractionated low dose regimen of free TPT in tumor-endothelial spheroids (TES) with/without radiation exposure for a prolonged period of 10 days. Using confocal microscopy, TPT fluorescence was monitored to determine the accumulation of drug within TES. These studies showed TES, being more reflective of the in vivo tumor microenvironment, were more sensitive to LTPT in comparison to free TPT with radiation. More importantly, the response of TES to low-dose metronomic TPT with radiation was comparable to similar treatment with LTPT. This TES study suggests nanoparticle formulations designed for extended release of drug can simulate LDMC in vivo
    corecore