7 research outputs found

    DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS)

    Get PDF
    The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009–2011) and the DOSIS 3D (2012–ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195–270 lGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 lGy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude

    THE DOSIS 3D PROJECT ON-BOARD THE INTERNATIONAL SPACE STATION – STATUS AND SCIENCE OVERVIEW OF 8 YEARS OF MEASUREMENTS (2012 – 2020)

    Get PDF
    The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era the radiation exposure during space missions has been monitored with various passive and active radiation instruments. Also on-board the International Space Station (ISS) a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in – and outside the ISS. The aim of the DOSIS 3D (2012 - ongoing) experiment is the measurement of the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at eleven locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other hand, with two active radiation detectors (DOSTEL) mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. The talk will give an overview of the current results of the data evaluation performed for the passive and active radiation detectors for DOSIS 3D in the years 2012 to 2020 and further focus on the work in progress for data comparison with other passive and active radiation detector systems measuring on-board the ISS

    DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS)

    No full text
    The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS), a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009–2011) and the DOSIS 3D (2012–ongoing) experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195–270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a) the variation in solar activity and (b) the changes in ISS altitude

    Astronaut’s Organ Doses Inferred from Measurements in a Human Phantom Outside the International Space Station

    No full text
    Space radiation hazards are recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a potentially limiting factor since current protection limits for low-Earth orbit missions may be approached or even exceeded. In such a situation, an accurate risk assessment requires knowledge of equivalent doses in critical radiosensitive organs rather than only skin doses or ambient doses from area monitoring. To achieve this, the MATROSHKA experiment uses a human phantom torso equipped with dedicated detector systems. We measured for the first time the doses from the diverse components of ionizing space radiation at the surface and at different locations inside the phantom positioned outside the International Space Station, thereby simulating an extravehicular activity of an astronaut. The relationships between the skin and organ absorbed doses obtained in such an exposure show a steep gradient between the doses in the uppermost layer of the skin and the deep organs with a ratio close to 20. This decrease due to the body self-shielding and a concomitant increase of the radiation quality factor by 1.7 highlight the complexities of an adequate dosimetry of space radiation. The depth-dose distributions established by MATROSHKA serve as benchmarks for space radiation models and radiation transport calculations that are needed for mission planning
    corecore