1,025 research outputs found
The generating function for a particular class of characters of SU(n)
We compute the generating function for the characters of the irreducible
representations of SU(n) whose associated Young diagrams have only two rows
with the same number of boxes. The result is a rational determinantal
expression in which both the numerator and the denominator have a simple
structure when expressed in terms of Schur polynomials.Comment: 7 pages, no figure
Entanglement spectra of critical and near-critical systems in one dimension
The entanglement spectrum of a pure state of a bipartite system is the full
set of eigenvalues of the reduced density matrix obtained from tracing out one
part. Such spectra are known in several cases to contain important information
beyond that in the entanglement entropy. This paper studies the entanglement
spectrum for a variety of critical and near-critical quantum lattice models in
one dimension, chiefly by the iTEBD numerical method, which enables both
integrable and non-integrable models to be studied. We find that the
distribution of eigenvalues in the entanglement spectra agrees with an
approximate result derived by Calabrese and Lefevre to an accuracy of a few
percent for all models studied. This result applies whether the correlation
length is intrinsic or generated by the finite matrix size accessible in iTEBD.
For the transverse Ising model, the known exact results for the entanglement
spectrum are used to confirm the validity of the iTEBD approach. For more
general models, no exact result is available but the iTEBD results directly
test the hypothesis that all moments of the reduced density matrix are
determined by a single parameter.Comment: 6 pages, 5 figure
Physics and Mathematics of Calogero particles
We give a review of the mathematical and physical properties of the
celebrated family of Calogero-like models and related spin chains.Comment: Version to appear in Special Issue of Journal of Physics A:
Mathematical and Genera
Phases of dual superconductivity and confinement in softly broken N=2 supersymmetric Yang-Mills theories
We study the electric flux tubes that undertake color confinement in N=2
supersymmetric Yang-Mills theories softly broken down to N=1 by perturbing with
the first two Casimir operators. The relevant Abelian Higgs model is not the
standard one due to the presence of an off-diagonal coupling among different
magnetic U(1) factors. We perform a preliminary study of this model at a
qualitative level. BPS vortices are explicitely obtained for particular values
of the soft breaking parameters. Generically however, even in the ultrastrong
scaling limit, vortices are not critical but live in a "hybrid" type II phase.
Also, ratios among string tensions are seen to follow no simple pattern. We
examine the situation at the half Higgsed vacua and find evidence for solutions
with the behaviour of superconducting strings. In some cases they are solutions
to BPS equations.Comment: 15 pages, 1 figure, revtex; v2: typos corrected, final versio
Pressure-induced charge ordering transition in CaMn7O12
We use high-pressure resistivity and single crystal x-ray diffraction at ambient and low temperature to investigate the charge ordering phase transition of CaMn 7 O 12 . We have found that at ambient temperature the Jahn-Teller distortion of the Mn 3 + O 6 octahedra rapidly decreases above 20 GPa, and vanishes at 28 GPa, when two Mn octahedral sites initially occupied by Mn 3 + and Mn 4 + become regular and equivalent as the result of a charge delocalization. Such a change correlates with a two orders of magnitude drop in the resistivity and a symmetry increase from the low-pressure rhombohedral R ¯ 3 phase to the cubic Im ¯ 3 structure, the same as one found at ambient pressure above 440 K. This yields the slope of the charge ordering phase boundary of d T c / d p ? ? 6 K/GPa. This result is further supported by the lack of a structural phase transition up to the maximum measured pressure of 30 GPa when the experiment is performed at 70 K. The satellite reflections of the structural modulation of the multiferroic phase of CaMn 7 O 12 observed at 70 K were found to hold up to 25 GPa with the structure keeping a constant modulation vector k = ( 0 0 0.925 ) with pressure. The average structure at 70 K does not show other indications of further phase transition.Y. Li and X. Du from Peking University are greatly acknowledged for growing and providing the CaMn7O12 crystals. D. Spahr and J. König from Goethe University are acknowledged for help with the single-crystal diffraction experiments. M.S. would like to acknowledge the financial support under the DFG-ANR Grant No. WI1232/41-1 and DFG GACR Project No. WI3320/3-1. V.M. and J.R.-F. thank the financial support from the Spanish Ministerio de Ciencia e Innovación (MICINN) for the Beatriz Galindo Program (BG20/000777) and for the Project No. PGC2018-097520- A-I00, respectively. DESY Photon Science is gratefully acknowledged. PETRA III at DESY is a member of the Helmholtz Association (HGF)
Ferroelectric soft mode of polar ZnTiO3 investigated by Raman spectroscopy at high pressure
We explore the vibrational behavior and stability of ferroelectric ZnTiO3 under high pressure by Raman spectroscopy and second-harmonic-generation (SHG) measurements. Ab initio lattice-dynamics calculations have been employed to solve a controversy concerning the phonon-dispersion relations of ZnTiO3 and to carry out an assignment of the Raman modes. A ferroelectric to paraelectric phase transition has been observed both by Raman spectroscopy and SHG at 20.8 GPa. Contrary to LiNbO3, the ferroelectric soft mode of ZnTiO3 has been found to be the A1(2) and not the A1(1) mode. The calculated eigenvectors show that the A1(2) mode of ferroelectric ZnTiO3 is an antiphase vibration of the Ti atom against the oxygen framework, similar to the soft modes observed in ferroelectric perovskites. The SHG signal of ZnTiO3 has been found to be independent of the grain size below the phase transition, indicating that ZnTiO3 is a phase-matchable compound
Domain Walls and Flux Tubes in N=2 SQCD: D-Brane Prototypes
This paper could have been entitled "D branes and strings from flesh and
blood." We study field theoretic prototypes of D branes/strings. To this end we
consider (2+1)-dimensional domain walls in (3+1)-dimensional N=2 SQCD with
SU(2) gauge group and two quark flavors in the fundamental representation. This
theory is perturbed by a small mass term of the adjoint matter which, in the
leading order in the mass parameter, does not break N=2 supersymmetry, and
reduces to a (generalized) Fayet-Iliopoulos term in the effective low-energy
N=2 SQED. We find 1/2 BPS-saturated domain wall solution interpolating between
two quark vacua at weak coupling, and show that this domain wall localizes a
U(1) gauge field. To make contact with the brane/string picture we consider the
Abrikosov-Nielsen-Olesen magnetic flux tube in one of two quark vacua and
demonstrate that it can end on the domain wall. We find an explicit 1/4
BPS-saturated solution for the wall/flux tube junction. We verify that the end
point of the flux tube on the wall plays the role of an electric charge in the
dual (2+1)-dimensional SQED living on the wall. Flow to N=1 theory is
discussed. Our results lead us to a conjecture regarding the notorious "missing
wall" in the solution of Kaplunovsky et al.Comment: 41 pages, 5 figures, Sect. 9.3 expanded, typos correcte
Regulatory dendritic cells restrain NK cell IFN-γ production through mechanisms involving NKp46, IL-10, and MHC class I-specific inhibitory receptors
Cross-talk between mature dendritic cells (mDC) and NK cells through the cell surface receptors NKp30 and DNAM-1 leads to their reciprocal activation. However, the impact of regulatory dendritic cells (regDC) on NK cell function remains unknown. As regDC constrain the immune response in different physiological and pathological conditions, the aim of this work was to investigate the functional outcome of the interaction between regDC and NK cells and the associated underlying mechanisms. RegDC generated from monocyte-derived DC treated either with LPS and dexamethasone, vitamin D3, or vitamin D3 and dexamethasone instructed NK cells to secrete lower amounts of IFN-γ than NK cells exposed to mDC. Although regDC triggered upregulation of the activation markers CD69 and CD25 on NK cells, they did not induce upregulation of CD56 as mDC, and silenced IFN-γ secretion through mechanisms involving insufficient secretion of IL-18, but not IL-12 or IL-15 and/or induction of NK cell apoptosis. Blocking experiments demonstrated that regDC curb IFN-γ secretion by NK cells through a dominant suppressive mechanism involving IL-10, NK cell inhibitory receptors, and, unexpectedly, engagement of the activating receptor NKp46. Our findings unveil a previously unrecognized cross-talk through which regDC shape NK cell function toward an alternative activated phenotype unable to secrete IFN-γ, highlighting the plasticity of NK cells in response to tolerogenic stimuli. In addition, our findings contribute to identify a novel inhibitory role for NKp46 in the control of NK cell function, and have broad implications in the resolution of inflammatory responses and evasion of antitumor responses.Facultad de Ciencias Exacta
Strain-balanced type-II superlattices for efficient multi-junction solar cells
Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0–1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit
- …