3 research outputs found

    Iridium-catalyzed reductive Strecker reaction for late-stage amide and lactam cyanation

    No full text
    A new iridium-catalyzed reductive Strecker reaction for the direct and efficient formation of α-amino nitrile products from a broad range of (hetero)aromatic and aliphatic tertiary amides, and N-alkyl lactams is reported. The protocol exploits the mild and highly chemoselective reduction of the amide and lactam functionalities using IrCl(CO)[P(C6 H5 )3 ]2 (Vaska's complex) in the presence of tetramethyldisiloxane, as a reductant, to directly generate hemiaminal species able to undergo substitution by cyanide upon treatment with TMSCN (TMS=trimethylsilyl). The protocol is simple to perform, broad in scope, efficient (up to 99 % yield), and has been successfully applied to the late-stage functionalization of amide- and lactam-containing drugs, and naturally occurring alkaloids, as well as for the selective cyanation of the carbonyl carbon atom linked to the N atom of proline residues within di- and tripeptides

    Iridium-catalyzed reductive Strecker reaction for late-stage amide and lactam cyanation

    No full text
    A new iridium-catalyzed reductive Strecker reaction for the direct and efficient formation of α-amino nitrile products from a broad range of (hetero)aromatic and aliphatic tertiary amides, and N-alkyl lactams is reported. The protocol exploits the mild and highly chemoselective reduction of the amide and lactam functionalities using IrCl(CO)[P(C6 H5 )3 ]2 (Vaska's complex) in the presence of tetramethyldisiloxane, as a reductant, to directly generate hemiaminal species able to undergo substitution by cyanide upon treatment with TMSCN (TMS=trimethylsilyl). The protocol is simple to perform, broad in scope, efficient (up to 99 % yield), and has been successfully applied to the late-stage functionalization of amide- and lactam-containing drugs, and naturally occurring alkaloids, as well as for the selective cyanation of the carbonyl carbon atom linked to the N atom of proline residues within di- and tripeptides

    A new organocatalytic desymmetrization reaction enables the enantioselective total synthesis of madangamine E

    No full text
    The enantioselective total synthesis of madangamine E has been completed in 30 steps, enabled by a new catalytic and highly enantioselective desymmetrizing intramolecular Michael addition reaction of a prochiral ketone to a tethered β,β′-disubstituted nitroolefin. This key carbon–carbon bond forming reaction efficiently constructed a chiral bicyclic core in near-perfect enantio- and diastereo-selectivity, concurrently established three stereogenic centers, including a quaternary carbon, and proved highly scalable. Furthermore, the pathway and origins of enantioselectivity in this catalytic cyclization were probed using density functional theory (DFT) calculations, which revealed the crucial substrate/catalyst interactions in the enantio-determining step. Following construction of the bicyclic core, the total synthesis of madangamine E could be completed, with key steps including a mild one-pot oxidative lactamization of an amino alcohol, a two-step Z-selective olefination of a sterically hindered ketone, and ring-closing metatheses to install the two macrocyclic rings
    corecore